HITs-Examples/FiniteSets/ordered.v

575 lines
20 KiB
Coq
Raw Permalink Normal View History

Require Import HoTT.
Require Import HitTactics.
Require Import definition.
Require Import operations.
Require Import properties.
Require Import empty_set.
Class Antisymmetric {A} (R : relation A) :=
antisymmetry : forall x y, R x y -> R y x -> x = y.
Class Total {A} (R : relation A) :=
total : forall x y, x = y \/ R x y \/ R y x.
Class TotalOrder {A} (R : relation A) :=
{ TotalOrder_Reflexive : Reflexive R | 2 ;
TotalOrder_Antisymmetric : Antisymmetric R | 2;
TotalOrder_Transitive : Transitive R | 2;
TotalOrder_Total : Total R | 2; }.
Context {A : Type0}.
Context {A_deceq : DecidablePaths A}.
Context {R: relation A}.
Context {A_ordered : TotalOrder R}.
Ltac eq_neq_tac :=
match goal with
| [ H: ?x <> E, H': ?x = E |- _ ] => destruct H; assumption
end.
Ltac destruct_match_1 :=
repeat match goal with
| [|- match ?X with | _ => _ end ] => destruct X
| [|- ?X = ?Y ] => apply path_ishprop
| [ H: ?x <> E |- Empty ] => destruct H
| [ H1: ?x = E, H2: ?y = E, H3: ?w ?q = E |- ?r = E]
=> rewrite H1, H2 in H3; rewrite nl in H3; rewrite nl in H3
end.
Lemma transport_dom_eq (D1 D2 C: Type) (P: D1 = D2) (f: D1 -> C) :
transport (fun T: Type => T -> C) P f = fun y => f (transport (fun X => X) P^ y).
Proof.
induction P.
hott_simpl.
Defined.
Lemma transport_dom_eq_gen (Ty: Type) (D1 D2: Ty) (C: Type) (P: D1 = D2)
(Q : Ty -> Type) (f: Q D1 -> C) :
transport (fun X: Ty => Q X -> C) P f = fun y => f (transport Q P^ y).
Proof.
induction P.
hott_simpl.
Defined.
2017-06-14 13:08:41 +02:00
(* Lemma min {HFun: Funext} (x: FSet A): x <> ∅ -> A. *)
(* Proof. *)
(* hrecursion x. *)
(* - intro H. destruct H. reflexivity. *)
(* - intros. exact a. *)
(* - intros x y rx ry H. *)
(* apply union_non_empty' in H. *)
(* destruct H. *)
(* + destruct p. specialize (rx fst). exact rx. *)
(* + destruct s. *)
(* * destruct p. specialize (ry snd). exact ry. *)
(* * destruct p. specialize (rx fst). specialize (ry snd). *)
(* destruct (TotalOrder_Total rx ry) as [Heq | [ Hx | Hy ]]. *)
(* ** exact rx. *)
(* ** exact rx. *)
(* ** exact ry. *)
(* - intros. rewrite transport_dom_eq_gen. *)
(* apply path_forall. intro y0. *)
(* destruct ( union_non_empty' x y z *)
(* (transport (fun X : FSet A => X <> ∅) (assoc x y z)^ y0)) *)
(* as [[ G1 G2] | [[ G3 G4] | [G5 G6]]]. *)
(* + pose (G2' := G2). apply eset_union_lr in G2'; destruct G2'. cbn. *)
(* destruct (union_non_empty' x y z y0) as *)
(* [[H'x H'y] | [ [H'a H'b] | [H'c H'd]]]; try eq_neq_tac. *)
(* destruct (union_non_empty' x y H'x). *)
(* ** destruct p. assert (G1 = fst0). apply path_forall. intro. *)
(* apply path_ishprop. rewrite X. reflexivity. *)
(* ** destruct s; destruct p; eq_neq_tac. *)
(* + destruct (union_non_empty' y z G4) as *)
(* [[H'x H'y] | [ [H'a H'b] | [H'c H'd]]]; try eq_neq_tac. *)
(* destruct (union_non_empty' x y z y0). *)
(* ** destruct p. cbn. destruct (union_non_empty' x y fst). *)
(* *** destruct p; eq_neq_tac. *)
(* *** destruct s. destruct p. *)
(* **** assert (H'x = snd0). apply path_forall. intro. *)
(* apply path_ishprop. rewrite X. reflexivity. *)
(* **** destruct p. eq_neq_tac. *)
(* ** destruct s; destruct p; try eq_neq_tac. *)
(* ** destruct (union_non_empty' x y z y0). *)
(* *** destruct p. eq_neq_tac. *)
(* *** destruct s. destruct p. *)
(* **** assert (H'b = snd). apply path_forall. intro. *)
(* apply path_ishprop. rewrite X. reflexivity. *)
(* **** destruct p. assert (x y = E). *)
(* rewrite H'a, G3. apply union_idem. eq_neq_tac. *)
(* ** cbn. destruct (TotalOrder_Total (py H'c) (pz H'd)). *)
(* *** destruct (union_non_empty' x y z y0). *)
(* **** destruct p0. eq_neq_tac. *)
(* **** destruct s. *)
(* ***** destruct p0. rewrite G3, nl in fst. eq_neq_tac. *)
(* ***** destruct p0. destruct (union_non_empty' x y fst). *)
(* ****** destruct p0. eq_neq_tac. *)
(* ****** destruct s. *)
(* ******* destruct p0. *)
(* destruct (TotalOrder_Total (py snd0) (pz snd)). *)
(* f_ap. apply path_forall. intro. *)
(* apply path_ishprop. *)
(* destruct s. f_ap. apply path_forall. intro. *)
(* apply path_ishprop. *)
(* rewrite p. f_ap. apply path_forall. intro. *)
(* apply path_ishprop. *)
(* ******* destruct p0. eq_neq_tac. *)
(* *** destruct (union_non_empty' x y z y0). *)
(* **** destruct p. eq_neq_tac. *)
(* **** destruct s0. destruct p. rewrite comm in fst. *)
(* apply eset_union_l in fst. eq_neq_tac. *)
(* destruct p. *)
(* destruct (union_non_empty' x y fst). *)
(* ***** destruct p; eq_neq_tac. *)
(* ***** destruct s0. destruct p. *)
(* destruct (TotalOrder_Total (py snd0) (pz snd)); *)
(* destruct s; try (f_ap; apply path_forall; intro; *)
(* apply path_ishprop). *)
(* rewrite p. f_ap; apply path_forall; intro; *)
(* apply path_ishprop. *)
(* destruct s0. f_ap; apply path_forall; intro; *)
(* apply path_ishprop. *)
(* assert (snd0 = H'c). apply path_forall; intro; *)
(* apply path_ishprop. *)
(* assert (snd = H'd). apply path_forall; intro; *)
(* apply path_ishprop. *)
(* rewrite <- X0 in r. rewrite X in r0. *)
(* apply TotalOrder_Antisymmetric; assumption. *)
(* destruct s0. *)
(* assert (snd0 = H'c). apply path_forall; intro; *)
(* apply path_ishprop. *)
(* assert (snd = H'd). apply path_forall; intro; *)
(* apply path_ishprop. *)
(* rewrite <- X in r. rewrite X0 in r0. *)
(* apply TotalOrder_Antisymmetric; assumption. *)
(* f_ap; apply path_forall; intro; *)
(* apply path_ishprop. *)
(* destruct p; eq_neq_tac. *)
(* + cbn. destruct (union_non_empty' y z G6). *)
(* ** destruct p. destruct ( union_non_empty' x y z y0). *)
(* *** destruct p. destruct (union_non_empty' x y fst0). *)
(* **** destruct p; eq_neq_tac. *)
(* **** destruct s; destruct p. eq_neq_tac. *)
(* assert (fst1 = G5). apply path_forall; intro; *)
(* apply path_ishprop. *)
(* assert (fst = snd1). apply path_forall; intro; *)
(* apply path_ishprop. *)
(* rewrite X, X0. *)
(* destruct (TotalOrder_Total (px G5) (py snd1)). *)
(* reflexivity. *)
(* destruct s; reflexivity. *)
(* *** destruct s; destruct p; eq_neq_tac. *)
(* ** destruct (union_non_empty' x y z y0). *)
(* *** destruct p. destruct s; destruct p; eq_neq_tac. *)
(* *** destruct s. destruct p. destruct s0. destruct p. *)
(* apply eset_union_l in fst0. eq_neq_tac. *)
(* **** destruct p. *)
(* assert (snd = snd0). apply path_forall; intro; *)
(* apply path_ishprop. *)
2017-06-14 13:08:41 +02:00
(* destruct (union_non_empty' x y fst0). *)
(* destruct p. *)
(* assert (fst1 = G5). apply path_forall; intro; *)
(* apply path_ishprop. *)
(* assert (fst = snd1). apply set_path2. *)
(* ***** rewrite X0. rewrite <- X. reflexivity. *)
(* ***** destruct s; destruct p; eq_neq_tac. *)
(* **** destruct s0. destruct p0. destruct p. *)
(* ***** apply eset_union_l in fst. eq_neq_tac. *)
(* ***** destruct p, p0. *)
(* assert (snd0 = snd). apply path_forall; intro; *)
(* apply path_ishprop. *)
(* rewrite X. *)
(* destruct (union_non_empty' x y fst0). *)
(* destruct p; eq_neq_tac. *)
(* destruct s. destruct p; eq_neq_tac. *)
(* destruct p. *)
(* assert (fst = snd1). apply path_forall; intro; *)
(* apply path_ishprop. *)
(* assert (fst1 = G5). apply path_forall; intro; *)
(* apply path_ishprop. *)
(* rewrite <- X0. rewrite X1. *)
(* destruct (TotalOrder_Total (py fst) (pz snd)). *)
(* ****** rewrite <- p. *)
(* destruct (TotalOrder_Total (px G5) (py fst)). *)
(* rewrite <- p0. *)
(* destruct (TotalOrder_Total (px G5) (px G5)). *)
(* reflexivity. *)
(* destruct s; reflexivity. *)
(* destruct s. destruct (TotalOrder_Total (px G5) (py fst)). *)
(* reflexivity. *)
(* destruct s. *)
(* reflexivity. *)
(* apply TotalOrder_Antisymmetric; assumption. *)
(* destruct (TotalOrder_Total (py fst) (py fst)). *)
(* reflexivity. *)
(* destruct s; *)
(* reflexivity. *)
(* ****** destruct s. *)
(* destruct (TotalOrder_Total (px G5) (py fst)). *)
(* destruct (TotalOrder_Total (px G5) (pz snd)). *)
(* reflexivity. *)
(* destruct s. *)
(* reflexivity. rewrite <- p in r. *)
(* apply TotalOrder_Antisymmetric; assumption. *)
(* destruct s. *)
(* destruct ( TotalOrder_Total (px G5) (pz snd)). *)
(* reflexivity. *)
(* destruct s. reflexivity. *)
(* apply (TotalOrder_Transitive (px G5)) in r. *)
(* apply TotalOrder_Antisymmetric; assumption. *)
(* assumption. *)
(* destruct (TotalOrder_Total (py fst) (pz snd)). reflexivity. *)
(* destruct s. reflexivity. *)
(* apply TotalOrder_Antisymmetric; assumption. *)
(* ******* *)
(* destruct ( TotalOrder_Total (px G5) (py fst)). *)
(* reflexivity. *)
(* destruct s. destruct (TotalOrder_Total (px G5) (pz snd)). *)
(* reflexivity. destruct s; reflexivity. *)
(* destruct ( TotalOrder_Total (px G5) (pz snd)). *)
(* rewrite <- p. *)
(* destruct (TotalOrder_Total (py fst) (px G5)). *)
(* apply symmetry; assumption. *)
(* destruct s. rewrite <- p in r. *)
(* apply TotalOrder_Antisymmetric; assumption. *)
(* reflexivity. destruct s. *)
(* assert ((py fst) = (pz snd)). apply TotalOrder_Antisymmetric. *)
(* apply (TotalOrder_Transitive (py fst) (px G5)); assumption. *)
(* assumption. rewrite X2. assert (px G5 = pz snd). *)
(* apply TotalOrder_Antisymmetric. assumption. *)
(* apply (TotalOrder_Transitive (pz snd) (py fst)); assumption. *)
(* rewrite X3. *)
(* destruct ( TotalOrder_Total (pz snd) (pz snd)). *)
(* reflexivity. destruct s; reflexivity. *)
(* destruct (TotalOrder_Total (py fst) (pz snd)). *)
(* apply TotalOrder_Antisymmetric. assumption. rewrite p. *)
(* apply (TotalOrder_Reflexive). destruct s. *)
(* apply TotalOrder_Antisymmetric; assumption. reflexivity. *)
(* - intros. rewrite transport_dom_eq_gen. *)
(* apply path_forall. intro y0. cbn. *)
(* destruct *)
(* (union_non_empty' x y *)
(* (transport (fun X : FSet A => X <> ∅) (comm x y)^ y0)) as *)
(* [[Hx Hy] | [ [Ha Hb] | [Hc Hd]]]; *)
(* destruct (union_non_empty' y x y0) as *)
(* [[H'x H'y] | [ [H'a H'b] | [H'c H'd]]]; *)
(* try (eq_neq_tac). *)
(* assert (Hx = H'b). apply path_forall. intro. *)
(* apply path_ishprop. rewrite X. reflexivity. *)
(* assert (Hb = H'x). apply path_forall. intro. *)
(* apply path_ishprop. rewrite X. reflexivity. *)
(* assert (Hd = H'c). apply path_forall. intro. *)
(* apply path_ishprop. rewrite X. *)
(* assert (H'd = Hc). apply path_forall. intro. *)
(* apply path_ishprop. *)
(* rewrite X0. rewrite <- X. *)
(* destruct *)
(* (TotalOrder_Total (px Hc) (py Hd)) as [G1 | [G2 | G3]]; *)
(* destruct *)
(* (TotalOrder_Total (py Hd) (px Hc)) as [T1 | [T2 | T3]]; *)
(* try (assumption); *)
(* try (reflexivity); *)
(* try (apply symmetry; assumption); *)
(* try (apply TotalOrder_Antisymmetric; assumption). *)
2017-06-14 13:08:41 +02:00
(* - intros. rewrite transport_dom_eq_gen. *)
(* apply path_forall. intro y. *)
(* destruct (union_non_empty' ∅ x (transport (fun X : FSet A => X <> ∅) (nl x)^ y)). *)
(* destruct p. eq_neq_tac. *)
(* destruct s. *)
(* destruct p. *)
(* assert (y = snd). *)
(* apply path_forall. intro. *)
(* apply path_ishprop. rewrite X. reflexivity. *)
(* destruct p. destruct fst. *)
(* - intros. rewrite transport_dom_eq_gen. *)
(* apply path_forall. intro y. *)
(* destruct (union_non_empty' x ∅ (transport (fun X : FSet A => X <> ∅) (nr x)^ y)). *)
(* destruct p. assert (y = fst). apply path_forall. intro. *)
(* apply path_ishprop. rewrite X. reflexivity. *)
(* destruct s. *)
(* destruct p. *)
(* eq_neq_tac. *)
(* destruct p. *)
(* destruct snd. *)
(* - intros. rewrite transport_dom_eq_gen. *)
(* apply path_forall. intro y. *)
(* destruct ( union_non_empty' {|x|} {|x|} (transport (fun X : FSet A => X <> ∅) (idem x)^ y)). *)
(* reflexivity. *)
(* destruct s. *)
(* reflexivity. *)
(* destruct p. *)
(* cbn. destruct (TotalOrder_Total x x). reflexivity. *)
(* destruct s; reflexivity. *)
(* Defined. *)
Definition minfset {HFun: Funext} :
FSet A -> { Y: (FSet A) & (Y = E) + { a: A & Y = L a } }.
intro X.
hinduction X.
- exists E. left. reflexivity.
- intro a. exists (L a). right. exists a. reflexivity.
- intros IH1 IH2.
destruct IH1 as [R1 HR1].
destruct IH2 as [R2 HR2].
destruct HR1.
destruct HR2.
exists E; left. reflexivity.
destruct s as [a Ha]. exists (L a). right.
exists a. reflexivity.
destruct HR2.
destruct s as [a Ha].
exists (L a). right. exists a. reflexivity.
destruct s as [a1 Ha1].
destruct s0 as [a2 Ha2].
assert (a1 = a2 \/ R a1 a2 \/ R a2 a1).
apply TotalOrder_Total.
destruct X.
exists (L a1). right. exists a1. reflexivity.
destruct s.
exists (L a1). right. exists a1. reflexivity.
exists (L a2). right. exists a2. reflexivity.
- cbn. intros R1 R2 R3.
destruct R1 as [Res1 HR1].
destruct HR1 as [HR1E | HR1S].
destruct R2 as [Res2 HR2].
destruct HR2 as [HR2E | HR2S].
destruct R3 as [Res3 HR3].
destruct HR3 as [HR3E | HR3S].
+ cbn. reflexivity.
+ cbn. reflexivity.
+ cbn. destruct R3 as [Res3 HR3].
destruct HR3 as [HR3E | HR3S].
* cbn. reflexivity.
* destruct HR2S as [a2 Ha2].
destruct HR3S as [a3 Ha3].
destruct (TotalOrder_Total a2 a3).
** cbn. reflexivity.
** destruct s. cbn. reflexivity.
cbn. reflexivity.
+ destruct HR1S as [a1 Ha1].
destruct R2 as [Res2 HR2].
destruct HR2 as [HR2E | HR2S].
destruct R3 as [Res3 HR3].
destruct HR3 as [HR3E | HR3S].
* cbn. reflexivity.
* destruct HR3S as [a3 Ha3].
destruct (TotalOrder_Total a1 a3).
reflexivity.
destruct s; reflexivity.
* destruct HR2S as [a2 Ha2].
destruct R3 as [Res3 HR3].
destruct HR3 as [HR3E | HR3S].
cbn. destruct (TotalOrder_Total a1 a2).
cbn. reflexivity.
destruct s.
cbn. reflexivity.
cbn. reflexivity.
destruct HR3S as [a3 Ha3].
destruct (TotalOrder_Total a2 a3).
** rewrite p.
destruct (TotalOrder_Total a1 a3).
rewrite p0.
destruct ( TotalOrder_Total a3 a3).
reflexivity.
destruct s; reflexivity.
destruct s. cbn.
destruct (TotalOrder_Total a1 a3).
reflexivity.
destruct s. reflexivity.
assert (a1 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity.
cbn. destruct (TotalOrder_Total a3 a3).
reflexivity.
destruct s; reflexivity.
** destruct s.
*** cbn. destruct (TotalOrder_Total a1 a2).
cbn. destruct (TotalOrder_Total a1 a3).
reflexivity.
destruct s. reflexivity.
rewrite <- p in r.
assert (a1 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity.
destruct s. cbn.
destruct (TotalOrder_Total a1 a3).
reflexivity.
destruct s. reflexivity.
assert (R a1 a3).
apply (TotalOrder_Transitive a1 a2); assumption.
assert (a1 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X0. reflexivity.
cbn. destruct (TotalOrder_Total a2 a3).
reflexivity.
destruct s.
reflexivity.
assert (a2 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity.
*** cbn. destruct (TotalOrder_Total a1 a3).
rewrite p. destruct (TotalOrder_Total a3 a2).
cbn. destruct (TotalOrder_Total a3 a3).
reflexivity. destruct s; reflexivity.
destruct s. cbn.
destruct (TotalOrder_Total a3 a3).
reflexivity. destruct s; reflexivity.
cbn. destruct (TotalOrder_Total a2 a3).
rewrite p0.
reflexivity.
destruct s.
assert (a2 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity. reflexivity.
destruct s.
cbn.
destruct (TotalOrder_Total a1 a2).
cbn.
destruct (TotalOrder_Total a1 a3).
reflexivity.
assert (a1 = a3).
apply TotalOrder_Antisymmetric. assumption.
rewrite <- p in r. assumption.
destruct s. reflexivity. rewrite X. reflexivity.
destruct s. cbn.
destruct (TotalOrder_Total a1 a3). reflexivity.
destruct s. reflexivity.
assert (a1 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity.
cbn. destruct (TotalOrder_Total a2 a3).
rewrite p in r1.
assert (a2 = a1).
transitivity a3.
assumption.
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity.
destruct s.
assert (a1 = a2).
apply TotalOrder_Antisymmetric.
apply (TotalOrder_Transitive a1 a3); assumption.
assumption.
rewrite X. reflexivity.
assert (a1 = a3).
apply TotalOrder_Antisymmetric.
assumption.
apply (TotalOrder_Transitive a3 a2); assumption.
rewrite X. reflexivity.
destruct ( TotalOrder_Total a1 a2).
cbn.
destruct (TotalOrder_Total a1 a3).
rewrite p0.
reflexivity.
destruct s.
assert (a1 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity. reflexivity.
destruct s.
cbn.
destruct (TotalOrder_Total a1 a3 ).
rewrite p.
reflexivity.
destruct s.
assert (a1 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity. reflexivity.
cbn.
destruct (TotalOrder_Total a1 a3 ).
assert (a2 = a3).
rewrite p in r1.
apply TotalOrder_Antisymmetric; assumption.
rewrite X. destruct (TotalOrder_Total a3 a3). reflexivity.
destruct s; reflexivity.
destruct s.
destruct (TotalOrder_Total a2 a3).
rewrite p.
reflexivity.
destruct s.
assert (a2 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity.
reflexivity.
cbn. destruct (TotalOrder_Total a2 a3).
rewrite p.
reflexivity.
destruct s.
assert (a2 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity. reflexivity.
- cbn. intros R1 R2.
destruct R1 as [La1 HR1].
destruct HR1 as [HR1E | HR1S].
destruct R2 as [La2 HR2].
destruct HR2 as [HR2E | HR2S].
reflexivity.
reflexivity.
destruct R2 as [La2 HR2].
destruct HR2 as [HR2E | HR2S].
reflexivity.
destruct HR1S as [a1 Ha1].
destruct HR2S as [a2 Ha2].
destruct (TotalOrder_Total a1 a2).
rewrite p.
destruct (TotalOrder_Total a2 a2).
reflexivity.
destruct s; reflexivity.
destruct s.
destruct (TotalOrder_Total a2 a1).
rewrite p.
reflexivity.
destruct s.
assert (a1 = a2).
apply TotalOrder_Antisymmetric; assumption.
rewrite X.
reflexivity.
reflexivity.
destruct (TotalOrder_Total a2 a1).
rewrite p.
reflexivity.
destruct s.
reflexivity.
assert (a1 = a2).
apply TotalOrder_Antisymmetric; assumption.
rewrite X.
reflexivity.
- cbn. intro R. destruct R as [La HR].
destruct HR. rewrite <- p. reflexivity.
destruct s as [a1 H].
apply (path_sigma' _ H^).
rewrite transport_sum.
f_ap.
rewrite transport_sigma.
simpl.
simple refine (path_sigma' _ _ _ ).
apply transport_const.
apply set_path2.
- intros R. cbn.
destruct R as [ R HR].
destruct HR as [HE | Ha ].
rewrite <- HE. reflexivity.
destruct Ha as [a Ha].
apply (path_sigma' _ Ha^).
rewrite transport_sum.
f_ap.
rewrite transport_sigma.
simpl.
simple refine (path_sigma' _ _ _ ).
apply transport_const.
apply set_path2.
- cbn. intro.
destruct (TotalOrder_Total x x).
reflexivity.
destruct s.
reflexivity.
reflexivity.
Defined.