HITs-Examples/Mod2.v

152 lines
2.9 KiB
Coq
Raw Permalink Normal View History

2017-01-02 13:08:36 +01:00
Require Export HoTT.
Require Import HitTactics.
2017-01-02 13:08:36 +01:00
Module Export modulo.
Private Inductive Mod2 : Type0 :=
| Z : Mod2
| succ : Mod2 -> Mod2.
Axiom mod : Z = succ(succ Z).
Fixpoint Mod2_ind
(P : Mod2 -> Type)
(a : P Z)
(s : forall (n : Mod2), P n -> P (succ n))
(mod' : mod # a = s (succ Z) (s Z a))
(x : Mod2)
{struct x}
: P x
:=
(match x return _ -> P x with
| Z => fun _ => a
| succ n => fun _ => s n ((Mod2_ind P a s mod') n)
end) mod'.
Axiom Mod2_ind_beta_mod : forall
(P : Mod2 -> Type)
(a : P Z)
(s : forall (n : Mod2), P n -> P (succ n))
(mod' : mod # a = s (succ Z) (s Z a))
, apD (Mod2_ind P a s mod') mod = mod'.
Fixpoint Mod2_rec
(P : Type)
(a : P)
(s : P -> P)
(mod' : a = s (s a))
(x : Mod2)
{struct x}
: P
:=
(match x return _ -> P with
| Z => fun _ => a
| succ n => fun _ => s ((Mod2_rec P a s mod') n)
end) mod'.
Axiom Mod2_rec_beta_mod : forall
(P : Type)
(a : P)
(s : P -> P)
(mod' : a = s (s a))
, ap (Mod2_rec P a s mod') mod = mod'.
Instance: HitRecursion Mod2 := {
indTy := _; recTy := _;
H_inductor := Mod2_ind;
H_recursor := Mod2_rec }.
2017-01-02 13:08:36 +01:00
End modulo.
2017-01-02 13:08:36 +01:00
Theorem modulo2 : forall n : Mod2, n = succ(succ n).
Proof.
intro n.
hinduction n.
- apply mod.
- intros n p.
apply (ap succ p).
- simpl.
etransitivity.
eapply (@transport_paths_FlFr _ _ idmap (fun n => succ (succ n))).
hott_simpl.
apply ap_compose.
Defined.
2017-01-02 13:08:36 +01:00
Definition negate : Mod2 -> Mod2.
Proof.
hrecursion.
- apply Z.
- intros. apply (succ H).
- simpl. apply mod.
2017-01-02 13:08:36 +01:00
Defined.
Definition plus : Mod2 -> Mod2 -> Mod2.
Proof.
intros n m.
hrecursion m.
- exact n.
- apply succ.
- apply modulo2.
2017-01-02 13:08:36 +01:00
Defined.
Definition Bool_to_Mod2 : Bool -> Mod2.
Proof.
intro b.
destruct b.
+ apply (succ Z).
+ apply Z.
2017-01-02 13:08:36 +01:00
Defined.
Definition Mod2_to_Bool : Mod2 -> Bool.
Proof.
intro x.
hrecursion x.
- exact false.
- exact negb.
- simpl. reflexivity.
2017-01-02 13:08:36 +01:00
Defined.
Theorem eq1 : forall n : Bool, Mod2_to_Bool (Bool_to_Mod2 n) = n.
Proof.
intro b.
destruct b; compute; reflexivity.
2017-01-02 13:08:36 +01:00
Qed.
Theorem Bool_to_Mod2_negb : forall x : Bool,
succ (Bool_to_Mod2 x) = Bool_to_Mod2 (negb x).
Proof.
intros.
destruct x; compute.
+ apply mod^.
+ apply reflexivity.
2017-01-02 13:08:36 +01:00
Defined.
Theorem eq2 : forall n : Mod2, Bool_to_Mod2 (Mod2_to_Bool n) = n.
Proof.
intro n.
hinduction n.
- reflexivity.
- intros n IHn.
symmetry. etransitivity. apply (ap succ IHn^).
etransitivity. apply Bool_to_Mod2_negb.
hott_simpl.
- rewrite @HoTT.Types.Paths.transport_paths_FlFr.
hott_simpl.
rewrite ap_compose.
enough (ap Mod2_to_Bool mod = idpath).
+ rewrite X. hott_simpl.
+ apply (Mod2_rec_beta_mod Bool false negb 1).
2017-01-02 13:08:36 +01:00
Defined.
Theorem adj :
forall x : Mod2, eq1 (Mod2_to_Bool x) = ap Mod2_to_Bool (eq2 x).
Proof.
intro x.
apply hset_bool.
Defined.
Definition isomorphism : IsEquiv Mod2_to_Bool.
Proof.
apply (BuildIsEquiv Mod2 Bool Mod2_to_Bool Bool_to_Mod2 eq1 eq2 adj).
2017-01-02 13:15:17 +01:00
Qed.