HITs-Examples/FiniteSets/fsets/monad.v

71 lines
1.8 KiB
Coq
Raw Normal View History

2017-06-20 11:33:13 +02:00
(* [FSet] is a (strong and stable) finite powerset monad *)
Require Import HoTT HitTactics.
Require Export representations.definition fsets.properties.
2017-06-20 11:33:13 +02:00
Definition ffmap {A B : Type} : (A -> B) -> FSet A -> FSet B.
2017-06-20 11:33:13 +02:00
Proof.
intro f.
hrecursion.
- exact .
- intro a. exact {| f a |}.
2017-08-08 15:29:50 +02:00
- intros X Y. apply (X Y).
2017-06-20 11:33:13 +02:00
- apply assoc.
- apply comm.
- apply nl.
- apply nr.
- simpl. intro x. apply idem.
Defined.
Lemma ffmap_1 `{Funext} {A : Type} : @ffmap A A idmap = idmap.
2017-06-20 11:33:13 +02:00
Proof.
apply path_forall.
2017-08-01 15:12:59 +02:00
intro x. hinduction x; try (intros; f_ap);
2017-06-20 11:33:13 +02:00
try (intros; apply set_path2).
Defined.
Global Instance fset_functorish `{Funext}: Functorish FSet
:= { fmap := @ffmap; fmap_idmap := @ffmap_1 _ }.
Lemma ffmap_compose {A B C : Type} `{Funext} (f : A -> B) (g : B -> C) :
fmap FSet (g o f) = fmap _ g o fmap _ f.
2017-06-20 11:33:13 +02:00
Proof.
apply path_forall. intro x.
2017-08-01 15:12:59 +02:00
hrecursion x; try (intros; f_ap);
2017-06-20 11:33:13 +02:00
try (intros; apply set_path2).
Defined.
Definition join {A : Type} : FSet (FSet A) -> FSet A.
Proof.
hrecursion.
- exact .
- exact idmap.
2017-08-08 15:29:50 +02:00
- intros X Y. apply (X Y).
2017-06-20 11:33:13 +02:00
- apply assoc.
- apply comm.
- apply nl.
- apply nr.
- simpl. apply union_idem.
Defined.
Lemma join_assoc {A : Type} (X : FSet (FSet (FSet A))) :
join (ffmap join X) = join (join X).
2017-06-20 11:33:13 +02:00
Proof.
2017-08-01 15:12:59 +02:00
hrecursion X; try (intros; f_ap);
2017-06-20 11:33:13 +02:00
try (intros; apply set_path2).
Defined.
Lemma join_return_1 {A : Type} (X : FSet A) :
join ({| X |}) = X.
Proof. reflexivity. Defined.
Lemma join_return_fmap {A : Type} (X : FSet A) :
join ({| X |}) = join (ffmap (fun x => {|x|}) X).
2017-06-20 11:33:13 +02:00
Proof.
2017-08-01 15:12:59 +02:00
hrecursion X; try (intros; f_ap);
2017-06-20 11:33:13 +02:00
try (intros; apply set_path2).
Defined.
Lemma join_fmap_return_1 {A : Type} (X : FSet A) :
join (ffmap (fun x => {|x|}) X) = X.
2017-06-20 11:33:13 +02:00
Proof. refine ((join_return_fmap _)^ @ join_return_1 _). Defined.