2017-09-07 15:19:48 +02:00
|
|
|
|
(** Properties of the operations on [FSetC A] *)
|
2017-08-02 11:40:03 +02:00
|
|
|
|
Require Import HoTT HitTactics.
|
2017-09-07 15:19:48 +02:00
|
|
|
|
Require Import list_representation list_representation.operations.
|
2017-08-02 11:40:03 +02:00
|
|
|
|
|
|
|
|
|
Section properties.
|
|
|
|
|
Context {A : Type}.
|
|
|
|
|
|
2017-09-19 17:22:15 +02:00
|
|
|
|
Definition append_nl (x: FSetC A) : ∅ ∪ x = x
|
|
|
|
|
:= idpath.
|
2017-08-02 11:40:03 +02:00
|
|
|
|
|
2017-08-08 15:29:50 +02:00
|
|
|
|
Lemma append_nr : forall (x: FSetC A), x ∪ ∅ = x.
|
2017-08-02 11:40:03 +02:00
|
|
|
|
Proof.
|
|
|
|
|
hinduction; try (intros; apply set_path2).
|
2017-09-07 15:19:48 +02:00
|
|
|
|
- reflexivity.
|
|
|
|
|
- intros. apply (ap (fun y => a;;y) X).
|
2017-08-02 11:40:03 +02:00
|
|
|
|
Defined.
|
2017-08-09 18:05:58 +02:00
|
|
|
|
|
2017-09-19 17:22:15 +02:00
|
|
|
|
Lemma append_assoc :
|
2017-08-08 15:29:50 +02:00
|
|
|
|
forall (x y z: FSetC A), x ∪ (y ∪ z) = (x ∪ y) ∪ z.
|
2017-08-02 11:40:03 +02:00
|
|
|
|
Proof.
|
2017-09-19 17:22:15 +02:00
|
|
|
|
intros x y z.
|
|
|
|
|
hinduction x ; try (intros ; apply path_ishprop).
|
|
|
|
|
- cbn.
|
|
|
|
|
reflexivity.
|
|
|
|
|
- intros.
|
|
|
|
|
cbn.
|
|
|
|
|
f_ap.
|
2017-08-02 11:40:03 +02:00
|
|
|
|
Defined.
|
2017-08-09 18:05:58 +02:00
|
|
|
|
|
|
|
|
|
Lemma append_singleton: forall (a: A) (x: FSetC A),
|
2017-08-08 15:29:50 +02:00
|
|
|
|
a ;; x = x ∪ (a ;; ∅).
|
2017-08-02 11:40:03 +02:00
|
|
|
|
Proof.
|
|
|
|
|
intro a. hinduction; try (intros; apply set_path2).
|
|
|
|
|
- reflexivity.
|
|
|
|
|
- intros b x HR. refine (_ @ _).
|
|
|
|
|
+ apply comm.
|
|
|
|
|
+ apply (ap (fun y => b ;; y) HR).
|
|
|
|
|
Defined.
|
|
|
|
|
|
2017-08-09 18:05:58 +02:00
|
|
|
|
Lemma append_comm {H: Funext}:
|
2017-08-08 15:29:50 +02:00
|
|
|
|
forall (x1 x2: FSetC A), x1 ∪ x2 = x2 ∪ x1.
|
2017-08-02 11:40:03 +02:00
|
|
|
|
Proof.
|
2017-08-08 15:29:50 +02:00
|
|
|
|
hinduction ; try (intros ; apply path_forall ; intro ; apply set_path2).
|
2017-09-07 15:19:48 +02:00
|
|
|
|
- intros.
|
|
|
|
|
apply (append_nr _)^.
|
2017-08-02 11:40:03 +02:00
|
|
|
|
- intros a x1 HR x2.
|
2017-09-07 15:19:48 +02:00
|
|
|
|
refine (ap (fun y => a;;y) (HR x2) @ _).
|
|
|
|
|
refine (append_singleton _ _ @ _).
|
|
|
|
|
refine ((append_assoc _ _ _)^ @ _).
|
|
|
|
|
refine (ap (x2 ∪) (append_singleton _ _)^).
|
2017-08-02 11:40:03 +02:00
|
|
|
|
Defined.
|
|
|
|
|
|
2017-08-09 18:05:58 +02:00
|
|
|
|
Lemma singleton_idem: forall (a: A),
|
2017-08-08 15:29:50 +02:00
|
|
|
|
{|a|} ∪ {|a|} = {|a|}.
|
2017-08-02 11:40:03 +02:00
|
|
|
|
Proof.
|
2017-08-08 15:29:50 +02:00
|
|
|
|
intro.
|
|
|
|
|
apply dupl.
|
2017-08-02 11:40:03 +02:00
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
End properties.
|