HITs-Examples/FiniteSets/fsets/length.v

40 lines
1.2 KiB
Coq
Raw Normal View History

2017-08-02 11:40:03 +02:00
(* The length function for finite sets *)
Require Import HoTT HitTactics.
From representations Require Import cons_repr definition.
From fsets Require Import operations_decidable isomorphism properties_decidable.
Section Length.
Context {A : Type}.
Context {A_deceq : DecidablePaths A}.
Context `{Univalence}.
Opaque isIn_b.
Definition length (x: FSetC A) : nat.
Proof.
simple refine (FSetC_ind A _ _ _ _ _ _ x ); simpl.
- exact 0.
- intros a y n.
pose (y' := FSetC_to_FSet y).
exact (if isIn_b a y' then n else (S n)).
- intros. rewrite transport_const. cbn.
simplify_isIn. simpl. reflexivity.
- intros. rewrite transport_const. cbn.
simplify_isIn.
destruct (dec (a = b)) as [Hab | Hab].
+ rewrite Hab. simplify_isIn. simpl. reflexivity.
+ rewrite ?L_isIn_b_false; auto. simpl.
destruct (isIn_b a (FSetC_to_FSet x0)), (isIn_b b (FSetC_to_FSet x0)) ; reflexivity.
intro p. contradiction (Hab p^).
Defined.
Definition length_FSet (x: FSet A) := length (FSet_to_FSetC x).
Lemma length_singleton: forall (a: A), length_FSet (L a) = 1.
Proof.
intro a.
cbn. reflexivity.
Defined.
End Length.