HITs-Examples/FiniteSets/interfaces/lattice_examples.v

251 lines
6.1 KiB
Coq
Raw Normal View History

2017-09-07 15:19:48 +02:00
(** Some examples of lattices. *)
Require Import HoTT lattice_interface.
(** [Bool] is a lattice. *)
Section BoolLattice.
Ltac solve_bool :=
let x := fresh in
repeat (intro x ; destruct x)
; compute
; auto
; try contradiction.
Instance maximum_bool : maximum Bool := orb.
Instance minimum_bool : minimum Bool := andb.
Instance bottom_bool : bottom Bool := false.
Global Instance lattice_bool : Lattice Bool.
Proof.
split ; solve_bool.
Defined.
Definition and_true : forall b, andb b true = b.
Proof.
solve_bool.
Defined.
Definition and_false : forall b, andb b false = false.
Proof.
solve_bool.
Defined.
Definition dist : forall b b b,
andb b (orb b b) = orb (andb b b) (andb b b).
Proof.
solve_bool.
Defined.
Definition dist : forall b b b,
orb b (andb b b) = andb (orb b b) (orb b b).
Proof.
solve_bool.
Defined.
Definition max_min : forall b b,
orb (andb b b) b = b.
Proof.
solve_bool.
Defined.
End BoolLattice.
Create HintDb bool_lattice_hints.
Hint Resolve associativity : bool_lattice_hints.
Hint Resolve (associativity _ _ _)^ : bool_lattice_hints.
Hint Resolve commutativity : bool_lattice_hints.
2017-09-07 15:19:48 +02:00
Hint Resolve absorb : bool_lattice_hints.
Hint Resolve idempotency : bool_lattice_hints.
Hint Resolve neutralityL : bool_lattice_hints.
Hint Resolve neutralityR : bool_lattice_hints.
Hint Resolve
associativity
and_true and_false
dist dist max_min
: bool_lattice_hints.
(** If [B] is a lattice, then [A -> B] is a lattice. *)
Section fun_lattice.
Context {A B : Type}.
Context `{Lattice B}.
Context `{Funext}.
Global Instance max_fun : maximum (A -> B) :=
fun (f g : A -> B) (a : A) => max_L0 (f a) (g a).
Global Instance min_fun : minimum (A -> B) :=
fun (f g : A -> B) (a : A) => min_L0 (f a) (g a).
Global Instance bot_fun : bottom (A -> B)
:= fun _ => empty_L.
Ltac solve_fun :=
compute ; intros ; apply path_forall ; intro ;
eauto with lattice_hints typeclass_instances.
Global Instance lattice_fun : Lattice (A -> B).
Proof.
split ; solve_fun.
Defined.
End fun_lattice.
(** If [A] is a lattice and [P] is closed under the lattice operations, then [Σ(x:A), P x] is a lattice. *)
Section sub_lattice.
Context {A : Type} {P : A -> hProp}.
Context `{Lattice A}.
Context {Hmax : forall x y, P x -> P y -> P (max_L0 x y)}.
Context {Hmin : forall x y, P x -> P y -> P (min_L0 x y)}.
Context {Hbot : P empty_L}.
Definition AP : Type := sig P.
Instance botAP : bottom AP := (empty_L ; Hbot).
Instance maxAP : maximum AP :=
fun x y =>
match x, y with
| (a ; pa), (b ; pb) => (max_L0 a b ; Hmax a b pa pb)
end.
Instance minAP : minimum AP :=
fun x y =>
match x, y with
| (a ; pa), (b ; pb) => (min_L0 a b ; Hmin a b pa pb)
end.
Instance hprop_sub : forall c, IsHProp (P c).
Proof.
apply _.
Defined.
Ltac solve_sub :=
let x := fresh in
repeat (intro x ; destruct x)
; simple refine (path_sigma _ _ _ _ _)
; simpl
; try (apply hprop_sub)
; eauto 3 with lattice_hints typeclass_instances.
Global Instance lattice_sub : Lattice AP.
Proof.
split ; solve_sub.
Defined.
End sub_lattice.
Instance lor : maximum hProp := fun X Y => BuildhProp (Trunc (-1) (sum X Y)).
Delimit Scope logic_scope with L.
Notation "A B" := (lor A B) (at level 20, right associativity) : logic_scope.
Arguments lor _%L _%L.
Open Scope logic_scope.
Instance land : minimum hProp := fun X Y => BuildhProp (prod X Y).
Instance lfalse : bottom hProp := False_hp.
Notation "A ∧ B" := (land A B) (at level 20, right associativity) : logic_scope.
Arguments land _%L _%L.
Open Scope logic_scope.
(** [hProp] is a lattice. *)
Section hPropLattice.
Context `{Univalence}.
Local Ltac lor_intros :=
let x := fresh in intro x
; repeat (strip_truncations ; destruct x as [x | x]).
Instance lor_commutative : Commutative lor.
Proof.
intros X Y.
apply path_iff_hprop ; lor_intros
; apply tr ; auto.
Defined.
Instance land_commutative : Commutative land.
Proof.
intros X Y.
apply path_hprop.
apply equiv_prod_symm.
Defined.
Instance lor_associative : Associative lor.
Proof.
intros X Y Z.
apply path_iff_hprop ; lor_intros
; apply tr ; auto
; try (left ; apply tr)
; try (right ; apply tr) ; auto.
Defined.
Instance land_associative : Associative land.
Proof.
intros X Y Z.
symmetry.
apply path_hprop.
apply equiv_prod_assoc.
Defined.
Instance lor_idempotent : Idempotent lor.
Proof.
intros X.
apply path_iff_hprop ; lor_intros
; try(refine (tr(inl _))) ; auto.
Defined.
Instance land_idempotent : Idempotent land.
Proof.
intros X.
apply path_iff_hprop ; cbn.
- intros [a b] ; apply a.
- intros a ; apply (pair a a).
Defined.
Instance lor_neutrall : NeutralL lor lfalse.
Proof.
intros X.
apply path_iff_hprop ; lor_intros ; try contradiction
; try (refine (tr(inr _))) ; auto.
Defined.
Instance lor_neutralr : NeutralR lor lfalse.
Proof.
intros X.
apply path_iff_hprop ; lor_intros ; try contradiction
; try (refine (tr(inl _))) ; auto.
Defined.
Instance absorption_orb_andb : Absorption lor land.
Proof.
intros Z1 Z2.
apply path_iff_hprop ; cbn.
- intros X ; strip_truncations.
destruct X as [Xx | [Xy1 Xy2]] ; assumption.
- intros X.
apply (tr (inl X)).
Defined.
Instance absorption_andb_orb : Absorption land lor.
Proof.
intros Z1 Z2.
apply path_iff_hprop ; cbn.
- intros [X Y] ; strip_truncations.
assumption.
- intros X.
split.
* assumption.
* apply (tr (inl X)).
Defined.
Global Instance lattice_hprop : Lattice hProp :=
{ commutative_min := _ ;
commutative_max := _ ;
associative_min := _ ;
associative_max := _ ;
idempotent_min := _ ;
idempotent_max := _ ;
neutralL_max := _ ;
neutralR_max := _ ;
absorption_min_max := _ ;
absorption_max_min := _
}.
End hPropLattice.