HITs-Examples/FiniteSets/interfaces/lattice_examples.v

291 lines
7.7 KiB
Coq
Raw Normal View History

2017-09-07 15:19:48 +02:00
(** Some examples of lattices. *)
Require Export HoTT lattice_interface.
2017-09-07 15:19:48 +02:00
(** [Bool] is a lattice. *)
Section BoolLattice.
Ltac solve_bool :=
let x := fresh in
repeat (intro x ; destruct x)
; compute
; auto
; try contradiction.
Instance maximum_bool : Join Bool := orb.
Instance minimum_bool : Meet Bool := andb.
Instance bottom_bool : Bottom Bool := false.
2017-09-07 15:19:48 +02:00
Global Instance boundedjoinsemilattice_bool : BoundedJoinSemiLattice Bool.
Proof. repeat (split ; (apply _ || solve_bool)). Defined.
Global Instance meetsemilattice_bool : MeetSemiLattice Bool.
Proof. repeat (split ; (apply _ || solve_bool)). Defined.
Global Instance boundedmeetsemilattice_bool : @BoundedSemiLattice Bool () true.
Proof. repeat (split ; (apply _ || solve_bool)). Defined.
2017-09-07 15:19:48 +02:00
Global Instance lattice_bool : Lattice Bool.
Proof. split ; (apply _ || solve_bool). Defined.
2017-09-07 15:19:48 +02:00
Definition and_true : forall b, andb b true = b.
Proof.
solve_bool.
Defined.
Definition and_false : forall b, andb b false = false.
Proof.
solve_bool.
Defined.
Definition dist : forall b b b,
andb b (orb b b) = orb (andb b b) (andb b b).
Proof.
solve_bool.
Defined.
Definition dist : forall b b b,
orb b (andb b b) = andb (orb b b) (orb b b).
Proof.
solve_bool.
Defined.
Definition max_min : forall b b,
orb (andb b b) b = b.
Proof.
solve_bool.
Defined.
End BoolLattice.
Create HintDb bool_lattice_hints.
Hint Resolve associativity : bool_lattice_hints.
(* Hint Resolve (associativity _ _ _)^ : bool_lattice_hints. *)
Hint Resolve commutativity : bool_lattice_hints.
Hint Resolve absorption : bool_lattice_hints.
2017-09-07 15:19:48 +02:00
Hint Resolve idempotency : bool_lattice_hints.
Hint Resolve left_identity : bool_lattice_hints.
Hint Resolve right_identity : bool_lattice_hints.
2017-09-07 15:19:48 +02:00
Hint Resolve
associativity
and_true and_false
dist dist max_min
: bool_lattice_hints.
(** If [B] is a lattice, then [A -> B] is a lattice. *)
Section fun_lattice.
Context {A B : Type}.
Context `{BJoin : Join B}.
Context `{BMeet : Meet B}.
Context `{@Lattice B BJoin BMeet}.
2017-09-07 15:19:48 +02:00
Context `{Funext}.
Context `{BBottom : Bottom B}.
2017-09-07 15:19:48 +02:00
Global Instance bot_fun : Bottom (A -> B)
:= fun _ => .
2017-09-07 15:19:48 +02:00
Global Instance join_fun : Join (A -> B) :=
fun (f g : A -> B) (a : A) => (f a) (g a).
2017-09-07 15:19:48 +02:00
Global Instance meet_fun : Meet (A -> B) :=
fun (f g : A -> B) (a : A) => (f a) (g a).
2017-09-07 15:19:48 +02:00
Ltac solve_fun :=
compute ; intros ; apply path_forall ; intro ;
eauto with lattice_hints typeclass_instances.
Create HintDb test1.
Lemma associativity_lat `{Lattice A} (x y z : A) :
x (y z) = x y z.
Proof. apply associativity. Defined.
Hint Resolve associativity : test1.
Hint Resolve associativity_lat : test1.
2017-09-07 15:19:48 +02:00
Global Instance lattice_fun : Lattice (A -> B).
Proof.
repeat (split; try (apply _)).
eauto with test1.
(* TODO *)
all: solve_fun.
apply associativity.
apply commutativity.
apply idempotency. apply _.
apply associativity.
apply commutativity.
apply idempotency. apply _.
Defined.
Global Instance boundedjoinsemilattice_fun
`{@BoundedJoinSemiLattice B BJoin BBottom} :
BoundedJoinSemiLattice (A -> B).
Proof.
repeat split; try apply _; try solve_fun.
2017-09-07 15:19:48 +02:00
Defined.
End fun_lattice.
(** If [A] is a lattice and [P] is closed under the lattice operations, then [Σ(x:A), P x] is a lattice. *)
Section sub_lattice.
Context {A : Type} {P : A -> hProp}.
Context `{Lattice A}.
Context `{Bottom A}.
Context {Hmax : forall x y, P x -> P y -> P (x y)}.
Context {Hmin : forall x y, P x -> P y -> P (x y)}.
Context {Hbot : P }.
2017-09-07 15:19:48 +02:00
Definition AP : Type := sig P.
Instance botAP : Bottom AP.
Proof. refine ( _). apply Hbot. Defined.
2017-09-07 15:19:48 +02:00
Instance maxAP : Join AP :=
2017-09-07 15:19:48 +02:00
fun x y =>
match x, y with
| (a ; pa), (b ; pb) => (a b ; Hmax a b pa pb)
2017-09-07 15:19:48 +02:00
end.
Instance minAP : Meet AP :=
2017-09-07 15:19:48 +02:00
fun x y =>
match x, y with
| (a ; pa), (b ; pb) => (a b ; Hmin a b pa pb)
2017-09-07 15:19:48 +02:00
end.
Instance hprop_sub : forall c, IsHProp (P c).
Proof.
apply _.
Defined.
Ltac solve_sub :=
let x := fresh in
repeat (intro x ; destruct x)
; simple refine (path_sigma _ _ _ _ _)
; simpl
; try (apply hprop_sub)
; eauto 3 with lattice_hints typeclass_instances.
Global Instance lattice_sub : Lattice AP.
Proof.
repeat (split ; try (apply _ || solve_sub)).
apply associativity.
apply commutativity.
apply idempotency. apply _.
apply associativity.
apply commutativity.
apply idempotency. apply _.
2017-09-07 15:19:48 +02:00
Defined.
End sub_lattice.
Instance lor : Join hProp := fun X Y => BuildhProp (Trunc (-1) (sum X Y)).
2017-09-07 15:19:48 +02:00
Delimit Scope logic_scope with L.
Notation "A B" := (lor A B) (at level 20, right associativity) : logic_scope.
Arguments lor _%L _%L.
Open Scope logic_scope.
Instance land : Meet hProp := fun X Y => BuildhProp (prod X Y).
Instance lfalse : Bottom hProp := False_hp.
2017-09-07 15:19:48 +02:00
Notation "A ∧ B" := (land A B) (at level 20, right associativity) : logic_scope.
Arguments land _%L _%L.
Open Scope logic_scope.
(** [hProp] is a lattice. *)
Section hPropLattice.
Context `{Univalence}.
Local Ltac lor_intros :=
let x := fresh in intro x
; repeat (strip_truncations ; destruct x as [x | x]).
Instance lor_commutative : Commutative lor.
Proof.
intros X Y.
apply path_iff_hprop ; lor_intros
; apply tr ; auto.
Defined.
Instance land_commutative : Commutative land.
Proof.
intros X Y.
apply path_hprop.
apply equiv_prod_symm.
Defined.
Instance lor_associative : Associative lor.
Proof.
intros X Y Z.
apply path_iff_hprop ; lor_intros
; apply tr ; auto
; try (left ; apply tr)
; try (right ; apply tr) ; auto.
Defined.
Instance land_associative : Associative land.
Proof.
intros X Y Z.
symmetry.
apply path_hprop.
symmetry.
2017-09-07 15:19:48 +02:00
apply equiv_prod_assoc.
Defined.
Instance lor_idempotent : BinaryIdempotent lor.
2017-09-07 15:19:48 +02:00
Proof.
intros X.
apply path_iff_hprop ; lor_intros
; try(refine (tr(inl _))) ; auto.
Defined.
Instance land_idempotent : BinaryIdempotent land.
2017-09-07 15:19:48 +02:00
Proof.
intros X.
apply path_iff_hprop ; cbn.
- intros [a b] ; apply a.
- intros a ; apply (pair a a).
Defined.
Instance lor_neutrall : LeftIdentity lor lfalse.
2017-09-07 15:19:48 +02:00
Proof.
intros X.
apply path_iff_hprop ; lor_intros ; try contradiction
; try (refine (tr(inr _))) ; auto.
Defined.
Instance lor_neutralr : RightIdentity lor lfalse.
2017-09-07 15:19:48 +02:00
Proof.
intros X.
apply path_iff_hprop ; lor_intros ; try contradiction
; try (refine (tr(inl _))) ; auto.
Defined.
Instance absorption_orb_andb : Absorption lor land.
Proof.
intros Z1 Z2.
apply path_iff_hprop ; cbn.
- intros X ; strip_truncations.
destruct X as [Xx | [Xy1 Xy2]] ; assumption.
- intros X.
apply (tr (inl X)).
Defined.
Instance absorption_andb_orb : Absorption land lor.
Proof.
intros Z1 Z2.
apply path_iff_hprop ; cbn.
- intros [X Y] ; strip_truncations.
assumption.
- intros X.
split.
* assumption.
* apply (tr (inl X)).
Defined.
Global Instance lattice_hprop : Lattice hProp.
Proof. repeat (split ; try apply _). Defined.
Global Instance bounded_jsl_hprop : BoundedJoinSemiLattice hProp.
Proof. repeat (split ; try apply _). Qed.
Global Instance top_hprop : Top hProp := Unit_hp.
Global Instance bounded_msl_hprop : @BoundedSemiLattice hProp () .
Proof.
repeat (split; try apply _); cbv.
- intros X. apply path_trunctype ; apply prod_unit_l.
- intros X. apply path_trunctype ; apply prod_unit_r.
Defined.
End hPropLattice.