HITs-Examples/FiniteSets/list_representation/isomorphism.v

169 lines
5.1 KiB
Coq
Raw Normal View History

(** The representations [FSet A] and [FSetC A] are isomorphic for every A *)
2017-08-02 11:40:03 +02:00
Require Import HoTT HitTactics.
2017-09-07 15:19:48 +02:00
Require Import list_representation list_representation.operations
list_representation.properties.
Require Import kuratowski.kuratowski_sets.
2017-08-02 11:40:03 +02:00
Section Iso.
Context {A : Type}.
2017-08-02 11:40:03 +02:00
Definition FSetC_to_FSet: FSetC A -> FSet A.
Proof.
hrecursion.
- apply .
2017-08-08 15:29:50 +02:00
- intros a x.
apply ({|a|} x).
2017-09-19 17:22:15 +02:00
- intros a X.
apply (assoc _ _ _ @ ap ( X) (idem _)).
- intros a X Y.
apply (assoc _ _ _ @ ap ( Y) (comm _ _) @ (assoc _ _ _)^).
2017-08-02 11:40:03 +02:00
Defined.
2017-08-08 15:29:50 +02:00
Definition FSet_to_FSetC: FSet A -> FSetC A.
Proof.
hrecursion.
- apply .
- apply (fun a => {|a|}).
- apply ().
2017-08-08 15:29:50 +02:00
- apply append_assoc.
- apply append_comm.
- apply append_nl.
- apply append_nr.
- apply singleton_idem.
Defined.
2017-08-02 11:40:03 +02:00
Lemma append_union: forall (x y: FSetC A),
2017-08-08 15:29:50 +02:00
FSetC_to_FSet (x y) = (FSetC_to_FSet x) (FSetC_to_FSet y).
2017-08-02 11:40:03 +02:00
Proof.
intros x y.
hrecursion x ; try (intros ; apply path_ishprop).
- intros.
apply (nl _)^.
- intros a x HR.
refine (ap ({|a|} ) HR @ assoc _ _ _).
2017-08-02 11:40:03 +02:00
Defined.
Lemma repr_iso_id_l: forall (x: FSet A), FSetC_to_FSet (FSet_to_FSetC x) = x.
Proof.
hinduction ; try (intros ; apply path_ishprop).
2017-08-02 11:40:03 +02:00
- reflexivity.
- intro.
apply nr.
- intros x y p q.
refine (append_union _ _ @ _).
refine (ap ( _) p @ _).
apply (ap (_ ) q).
2017-08-02 11:40:03 +02:00
Defined.
Lemma repr_iso_id_r: forall (x: FSetC A), FSet_to_FSetC (FSetC_to_FSet x) = x.
Proof.
hinduction ; try (intros ; apply path_ishprop).
2017-08-02 11:40:03 +02:00
- reflexivity.
- intros a x HR.
refine (ap ({|a|} ) HR).
2017-08-02 11:40:03 +02:00
Defined.
Global Instance: IsEquiv FSet_to_FSetC.
2017-08-02 11:40:03 +02:00
Proof.
apply isequiv_biinv.
split.
2017-08-02 11:40:03 +02:00
exists FSetC_to_FSet.
unfold Sect. apply repr_iso_id_l.
exists FSetC_to_FSet.
unfold Sect. apply repr_iso_id_r.
Defined.
Global Instance: IsEquiv FSetC_to_FSet.
Proof.
change (IsEquiv (FSet_to_FSetC)^-1).
apply isequiv_inverse.
Defined.
Theorem repr_iso: FSet A <~> FSetC A.
Proof.
simple refine (@BuildEquiv (FSet A) (FSetC A) FSet_to_FSetC _ ).
Defined.
Theorem fset_fsetc `{Univalence} : FSet A = FSetC A.
2017-08-03 14:43:42 +02:00
Proof.
apply (equiv_path _ _)^-1.
exact repr_iso.
Defined.
Definition dupl' (a : A) (X : FSet A) : {|a|} {|a|} X = {|a|} X
:= assoc _ _ _ @ ap ( X) (idem a).
Definition comm' (a b : A) (X : FSet A) : {|a|} {|b|} X = {|b|} {|a|} X
:= assoc _ _ _ @ ap ( X) (comm _ _) @ (assoc _ _ _)^.
Theorem FSet_cons_ind (P : FSet A -> Type)
(Pset : forall (X : FSet A), IsHSet (P X))
(Pempt : P )
(Pcons : forall (a : A) (X : FSet A), P X -> P ({|a|} X))
(Pdupl : forall (a : A) (X : FSet A) (px : P X),
transport P (dupl' a X) (Pcons a _ (Pcons a X px)) = Pcons a X px)
(Pcomm : forall (a b : A) (X : FSet A) (px : P X),
transport P (comm' a b X) (Pcons a _ (Pcons b X px)) = Pcons b _ (Pcons a X px))
(X : FSet A)
: P X.
Proof.
refine (transport P (repr_iso_id_l X) _).
simple refine (FSetC_ind A (fun Z => P (FSetC_to_FSet Z)) _ _ _ _ _ (FSet_to_FSetC X))
; simpl.
- apply Pempt.
- intros a Y HY.
apply (Pcons a _ HY).
2017-09-07 15:19:48 +02:00
- intros a Y PY.
refine (_ @ (Pdupl _ _ _)).
refine (transport_compose _ FSetC_to_FSet (dupl a Y) _ @ _).
refine (ap (fun z => transport P z _) _).
2017-09-07 15:19:48 +02:00
apply path_ishprop.
- intros a b Y PY.
refine (transport_compose _ FSetC_to_FSet (comm_s a b Y) _ @ _ @ (Pcomm _ _ _ _)).
refine (ap (fun z => transport P z _) _).
2017-09-07 15:19:48 +02:00
apply path_ishprop.
Defined.
(*
Theorem FSet_cons_ind_beta_empty (P : FSet A -> Type)
(Pset : forall (X : FSet A), IsHSet (P X))
(Pempt : P )
(Pcons : forall (a : A) (X : FSet A), P X -> P ({|a|} X))
(Pdupl : forall (a : A) (X : FSet A) (px : P X),
transport P (dupl' a X) (Pcons a _ (Pcons a X px)) = Pcons a X px)
(Pcomm : forall (a b : A) (X : FSet A) (px : P X),
transport P (comm' a b X) (Pcons a _ (Pcons b X px)) = Pcons b _ (Pcons a X px)) :
FSet_cons_ind P Pset Pempt Pcons Pdupl Pcomm = Pempt.
2017-09-07 15:19:48 +02:00
Proof.
by compute.
Defined.
Theorem FSet_cons_ind_beta_cons (P : FSet A -> Type)
(Pset : forall (X : FSet A), IsHSet (P X))
(Pempt : P )
(Pcons : forall (a : A) (X : FSet A), P X -> P ({|a|} X))
(Pdupl : forall (a : A) (X : FSet A) (px : P X),
transport P (dupl' a X) (Pcons a _ (Pcons a X px)) = Pcons a X px)
(Pcomm : forall (a b : A) (X : FSet A) (px : P X),
transport P (comm' a b X) (Pcons a _ (Pcons b X px)) = Pcons b _ (Pcons a X px)) :
forall a X, FSet_cons_ind P Pset Pempt Pcons Pdupl Pcomm ({|a|} X)
= Pcons a X (FSet_cons_ind P Pset Pempt Pcons Pdupl Pcomm X).
Proof.
intros.
unfold FSet_cons_ind.
simpl.
rewrite ?transport_pp.
hinduction X ; try(intros ; apply path_ishprop) ; simpl.
- admit.
- intro b.
unfold FSet_cons_ind.
simpl.
admit.
- intros.
unfold FSet_cons_ind.
simpl.
rewrite X.
*)
2017-08-03 14:43:42 +02:00
End Iso.