HITs-Examples/FiniteSets/misc/ordered.v

274 lines
7.1 KiB
Coq
Raw Normal View History

2017-09-07 15:19:48 +02:00
(** If [A] has a total order, then we can pick the minimum of finite sets. *)
Require Import HoTT HitTactics.
Require Import kuratowski.kuratowski_sets kuratowski.operations kuratowski.properties.
Definition relation A := A -> A -> Type.
Section TotalOrder.
Class IsTop (A : Type) (R : relation A) (a : A) :=
top_max : forall x, R x a.
Class LessThan (A : Type) :=
leq : relation A.
Class Antisymmetric {A} (R : relation A) :=
antisymmetry : forall x y, R x y -> R y x -> x = y.
Class Total {A} (R : relation A) :=
total : forall x y, x = y \/ R x y \/ R y x.
Class TotalOrder (A : Type) {R : LessThan A} :=
{ TotalOrder_Reflexive :> Reflexive R | 2 ;
TotalOrder_Antisymmetric :> Antisymmetric R | 2;
TotalOrder_Transitive :> Transitive R | 2;
TotalOrder_Total :> Total R | 2; }.
End TotalOrder.
Section minimum.
Context {A : Type}.
Context `{TotalOrder A}.
Definition min (x y : A) : A.
Proof.
destruct (@total _ R _ x y).
- apply x.
- destruct s as [s | s].
* apply x.
* apply y.
Defined.
Lemma min_spec1 x y : R (min x y) x.
Proof.
unfold min.
destruct (total x y) ; simpl.
- reflexivity.
- destruct s as [ | t].
* reflexivity.
* apply t.
Defined.
Lemma min_spec2 x y z : R z x -> R z y -> R z (min x y).
Proof.
intros.
unfold min.
destruct (total x y) as [ | s].
* assumption.
* try (destruct s) ; assumption.
Defined.
Lemma min_comm x y : min x y = min y x.
Proof.
unfold min.
destruct (total x y) ; destruct (total y x) ; simpl.
- assumption.
- destruct s as [s | s] ; auto.
- destruct s as [s | s] ; symmetry ; auto.
- destruct s as [s | s] ; destruct s0 as [s0 | s0] ; try reflexivity.
* apply (@antisymmetry _ R _ _) ; assumption.
* apply (@antisymmetry _ R _ _) ; assumption.
Defined.
Lemma min_idem x : min x x = x.
Proof.
unfold min.
destruct (total x x) ; simpl.
- reflexivity.
- destruct s ; reflexivity.
Defined.
Lemma min_assoc x y z : min (min x y) z = min x (min y z).
Proof.
apply (@antisymmetry _ R _ _).
- apply min_spec2.
* etransitivity ; apply min_spec1.
* apply min_spec2.
** etransitivity ; try (apply min_spec1).
simpl.
rewrite min_comm ; apply min_spec1.
** rewrite min_comm ; apply min_spec1.
- apply min_spec2.
* apply min_spec2.
** apply min_spec1.
** etransitivity.
{ rewrite min_comm ; apply min_spec1. }
apply min_spec1.
* transitivity (min y z); simpl
; rewrite min_comm ; apply min_spec1.
Defined.
Variable (top : A).
Context `{IsTop A R top}.
Lemma min_nr x : min x top = x.
Proof.
intros.
unfold min.
destruct (total x top).
- reflexivity.
- destruct s.
* reflexivity.
* apply (@antisymmetry _ R _ _).
** assumption.
** refine (top_max _). apply _.
Defined.
Lemma min_nl x : min top x = x.
Proof.
rewrite min_comm.
apply min_nr.
Defined.
Lemma min_top_l x y : min x y = top -> x = top.
Proof.
unfold min.
destruct (total x y).
- apply idmap.
- destruct s as [s | s].
* apply idmap.
* intros X.
rewrite X in s.
apply (@antisymmetry _ R _ _).
** apply top_max.
** assumption.
Defined.
Lemma min_top_r x y : min x y = top -> y = top.
Proof.
rewrite min_comm.
apply min_top_l.
Defined.
End minimum.
Section add_top.
Variable (A : Type).
Context `{TotalOrder A}.
Definition Top := A + Unit.
Definition top : Top := inr tt.
Global Instance RTop : LessThan Top.
Proof.
unfold relation.
induction 1 as [a1 | ] ; induction 1 as [a2 | ].
- apply (R a1 a2).
- apply Unit_hp.
- apply False_hp.
- apply Unit_hp.
Defined.
Global Instance rtop_hprop :
is_mere_relation A R -> is_mere_relation Top RTop.
Proof.
intros P a b.
destruct a ; destruct b ; apply _.
Defined.
Global Instance RTopOrder : TotalOrder Top.
Proof.
split.
- intros x ; induction x ; unfold RTop ; simpl.
* reflexivity.
* apply tt.
- intros x y ; induction x as [a1 | ] ; induction y as [a2 | ] ; unfold RTop ; simpl
; try contradiction.
* intros ; f_ap.
apply (@antisymmetry _ R _ _) ; assumption.
* intros ; induction b ; induction b0.
reflexivity.
- intros x y z ; induction x as [a1 | b1] ; induction y as [a2 | b2]
; induction z as [a3 | b3] ; unfold RTop ; simpl
; try contradiction ; intros ; try (apply tt).
transitivity a2 ; assumption.
- intros x y.
unfold RTop ; simpl.
induction x as [a1 | b1] ; induction y as [a2 | b2] ; try (apply (inl idpath)).
* destruct (TotalOrder_Total a1 a2).
** left ; f_ap ; assumption.
** right ; assumption.
* apply (inr(inl tt)).
* apply (inr(inr tt)).
* left ; induction b1 ; induction b2 ; reflexivity.
Defined.
Global Instance top_a_top : IsTop Top RTop top.
Proof.
intro x ; destruct x ; apply tt.
Defined.
End add_top.
(** If [A] has a total order, then a nonempty finite set has a minimum element. *)
Section min_set.
Variable (A : Type).
Context `{TotalOrder A}.
Context `{is_mere_relation A R}.
Context `{Univalence} `{IsHSet A}.
Definition min_set : FSet A -> Top A.
Proof.
hrecursion.
- apply (top A).
- apply inl.
- apply min.
- intros ; symmetry ; apply min_assoc.
- apply min_comm.
- apply min_nl. apply _.
- apply min_nr. apply _.
- intros ; apply min_idem.
Defined.
Definition empty_min : forall (X : FSet A), min_set X = top A -> X = .
Proof.
simple refine (FSet_ind _ _ _ _ _ _ _ _ _ _ _)
; try (intros ; apply path_forall ; intro q ; apply set_path2)
; simpl.
- intros ; reflexivity.
- intros.
unfold top in X.
enough Empty.
{ contradiction. }
refine (not_is_inl_and_inr' (inl a) _ _).
* apply tt.
* rewrite X ; apply tt.
- intros.
assert (min_set x = top A).
{
simple refine (min_top_l _ _ (min_set y) _) ; assumption.
}
rewrite (X X2).
rewrite nl.
assert (min_set y = top A).
{ simple refine (min_top_r _ (min_set x) _ _) ; assumption. }
rewrite (X0 X3).
reflexivity.
Defined.
Definition min_set_spec (a : A) : forall (X : FSet A),
a X -> RTop A (min_set X) (inl a).
Proof.
simple refine (FSet_ind _ _ _ _ _ _ _ _ _ _ _)
; try (intros ; apply path_ishprop)
; simpl.
- contradiction.
- intros.
strip_truncations.
rewrite X.
reflexivity.
- intros.
strip_truncations.
unfold member in X, X0.
destruct X1.
* specialize (X t).
assert (RTop A (min (min_set x) (min_set y)) (min_set x)) as X1.
{ apply min_spec1. }
etransitivity.
{ apply X1. }
assumption.
* specialize (X0 t).
assert (RTop A (min (min_set x) (min_set y)) (min_set y)) as X1.
{ rewrite min_comm ; apply min_spec1. }
etransitivity.
{ apply X1. }
assumption.
Defined.
End min_set.