mirror of https://github.com/nmvdw/HITs-Examples
207 lines
5.8 KiB
Coq
207 lines
5.8 KiB
Coq
|
Require Import HoTT.
|
|||
|
Require Export HoTT.
|
|||
|
|
|||
|
Module Export definition.
|
|||
|
|
|||
|
Section FSet.
|
|||
|
Variable A : Type.
|
|||
|
|
|||
|
Private Inductive FSet : Type :=
|
|||
|
| E : FSet
|
|||
|
| L : A -> FSet
|
|||
|
| U : FSet -> FSet -> FSet.
|
|||
|
|
|||
|
Notation "{| x |}" := (L x).
|
|||
|
Infix "∪" := U (at level 8, right associativity).
|
|||
|
Notation "∅" := E.
|
|||
|
|
|||
|
Axiom assoc : forall (x y z : FSet ),
|
|||
|
x ∪ (y ∪ z) = (x ∪ y) ∪ z.
|
|||
|
|
|||
|
Axiom comm : forall (x y : FSet),
|
|||
|
x ∪ y = y ∪ x.
|
|||
|
|
|||
|
Axiom nl : forall (x : FSet),
|
|||
|
∅ ∪ x = x.
|
|||
|
|
|||
|
Axiom nr : forall (x : FSet),
|
|||
|
x ∪ ∅ = x.
|
|||
|
|
|||
|
Axiom idem : forall (x : A),
|
|||
|
{| x |} ∪ {|x|} = {|x|}.
|
|||
|
|
|||
|
Axiom trunc : IsHSet FSet.
|
|||
|
|
|||
|
Fixpoint FSet_rec
|
|||
|
(P : Type)
|
|||
|
(H: IsHSet P)
|
|||
|
(e : P)
|
|||
|
(l : A -> P)
|
|||
|
(u : P -> P -> P)
|
|||
|
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
|||
|
(commP : forall (x y : P), u x y = u y x)
|
|||
|
(nlP : forall (x : P), u e x = x)
|
|||
|
(nrP : forall (x : P), u x e = x)
|
|||
|
(idemP : forall (x : A), u (l x) (l x) = l x)
|
|||
|
(x : FSet)
|
|||
|
{struct x}
|
|||
|
: P
|
|||
|
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P with
|
|||
|
| E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => e
|
|||
|
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => l a
|
|||
|
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => u
|
|||
|
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
|
|||
|
(FSet_rec P H e l u assocP commP nlP nrP idemP z)
|
|||
|
end) assocP commP nlP nrP idemP H.
|
|||
|
|
|||
|
Axiom FSet_rec_beta_assoc : forall
|
|||
|
(P : Type)
|
|||
|
(H: IsHSet P)
|
|||
|
(e : P)
|
|||
|
(l : A -> P)
|
|||
|
(u : P -> P -> P)
|
|||
|
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
|||
|
(commP : forall (x y : P), u x y = u y x)
|
|||
|
(nlP : forall (x : P), u e x = x)
|
|||
|
(nrP : forall (x : P), u x e = x)
|
|||
|
(idemP : forall (x : A), u (l x) (l x) = l x)
|
|||
|
(x y z : FSet),
|
|||
|
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (assoc x y z)
|
|||
|
=
|
|||
|
(assocP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
|||
|
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
|
|||
|
(FSet_rec P H e l u assocP commP nlP nrP idemP z)
|
|||
|
).
|
|||
|
|
|||
|
Axiom FSet_rec_beta_comm : forall
|
|||
|
(P : Type)
|
|||
|
(H: IsHSet P)
|
|||
|
(e : P)
|
|||
|
(l : A -> P)
|
|||
|
(u : P -> P -> P)
|
|||
|
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
|||
|
(commP : forall (x y : P), u x y = u y x)
|
|||
|
(nlP : forall (x : P), u e x = x)
|
|||
|
(nrP : forall (x : P), u x e = x)
|
|||
|
(idemP : forall (x : A), u (l x) (l x) = l x)
|
|||
|
(x y : FSet),
|
|||
|
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (comm x y)
|
|||
|
=
|
|||
|
(commP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
|||
|
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
|
|||
|
).
|
|||
|
|
|||
|
Axiom FSet_rec_beta_nl : forall
|
|||
|
(P : Type)
|
|||
|
(H: IsHSet P)
|
|||
|
(e : P)
|
|||
|
(l : A -> P)
|
|||
|
(u : P -> P -> P)
|
|||
|
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
|||
|
(commP : forall (x y : P), u x y = u y x)
|
|||
|
(nlP : forall (x : P), u e x = x)
|
|||
|
(nrP : forall (x : P), u x e = x)
|
|||
|
(idemP : forall (x : A), u (l x) (l x) = l x)
|
|||
|
(x : FSet),
|
|||
|
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (nl x)
|
|||
|
=
|
|||
|
(nlP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
|||
|
).
|
|||
|
|
|||
|
Axiom FSet_rec_beta_nr : forall
|
|||
|
(P : Type)
|
|||
|
(H: IsHSet P)
|
|||
|
(e : P)
|
|||
|
(l : A -> P)
|
|||
|
(u : P -> P -> P)
|
|||
|
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
|||
|
(commP : forall (x y : P), u x y = u y x)
|
|||
|
(nlP : forall (x : P), u e x = x)
|
|||
|
(nrP : forall (x : P), u x e = x)
|
|||
|
(idemP : forall (x : A), u (l x) (l x) = l x)
|
|||
|
(x : FSet),
|
|||
|
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (nr x)
|
|||
|
=
|
|||
|
(nrP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
|||
|
).
|
|||
|
|
|||
|
Axiom FSet_rec_beta_idem : forall
|
|||
|
(P : Type)
|
|||
|
(H: IsHSet P)
|
|||
|
(e : P)
|
|||
|
(l : A -> P)
|
|||
|
(u : P -> P -> P)
|
|||
|
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
|||
|
(commP : forall (x y : P), u x y = u y x)
|
|||
|
(nlP : forall (x : P), u e x = x)
|
|||
|
(nrP : forall (x : P), u x e = x)
|
|||
|
(idemP : forall (x : A), u (l x) (l x) = l x)
|
|||
|
(x : A),
|
|||
|
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (idem x)
|
|||
|
=
|
|||
|
idemP x.
|
|||
|
|
|||
|
End FSet.
|
|||
|
Section FSet_induction.
|
|||
|
Arguments E {_}.
|
|||
|
Arguments U {_} _ _.
|
|||
|
Arguments L {_} _.
|
|||
|
Arguments assoc {_} _ _ _.
|
|||
|
Arguments comm {_} _ _.
|
|||
|
Arguments nl {_} _.
|
|||
|
Arguments nr {_} _.
|
|||
|
Arguments idem {_} _.
|
|||
|
Variable A: Type.
|
|||
|
Variable (P : FSet A -> Type).
|
|||
|
Variable (H : forall a : FSet A, IsHSet (P a)).
|
|||
|
Variable (eP : P E).
|
|||
|
Variable (lP : forall a: A, P (L a)).
|
|||
|
Variable (uP : forall (x y: FSet A), P x -> P y -> P (U x y)).
|
|||
|
Variable (assocP : forall (x y z : FSet A)
|
|||
|
(px: P x) (py: P y) (pz: P z),
|
|||
|
assoc x y z #
|
|||
|
(uP x (U y z) px (uP y z py pz))
|
|||
|
=
|
|||
|
(uP (U x y) z (uP x y px py) pz)).
|
|||
|
Variable (commP : forall (x y: FSet A) (px: P x) (py: P y),
|
|||
|
comm x y #
|
|||
|
uP x y px py = uP y x py px).
|
|||
|
Variable (nlP : forall (x : FSet A) (px: P x),
|
|||
|
nl x # uP E x eP px = px).
|
|||
|
Variable (nrP : forall (x : FSet A) (px: P x),
|
|||
|
nr x # uP x E px eP = px).
|
|||
|
Variable (idemP : forall (x : A),
|
|||
|
idem x # uP (L x) (L x) (lP x) (lP x) = lP x).
|
|||
|
|
|||
|
(* Induction principle *)
|
|||
|
Fixpoint FSet_ind
|
|||
|
(x : FSet A)
|
|||
|
{struct x}
|
|||
|
: P x
|
|||
|
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P x with
|
|||
|
| E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => eP
|
|||
|
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => lP a
|
|||
|
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => uP y z
|
|||
|
(FSet_ind y)
|
|||
|
(FSet_ind z)
|
|||
|
end) H assocP commP nlP nrP idemP.
|
|||
|
|
|||
|
|
|||
|
Axiom FSet_ind_beta_assoc : forall (x y z : FSet A),
|
|||
|
apD FSet_ind (assoc x y z) =
|
|||
|
(assocP x y z (FSet_ind x) (FSet_ind y) (FSet_ind z)).
|
|||
|
|
|||
|
Axiom FSet_ind_beta_comm : forall (x y : FSet A),
|
|||
|
apD FSet_ind (comm x y) = (commP x y (FSet_ind x) (FSet_ind y)).
|
|||
|
|
|||
|
Axiom FSet_ind_beta_nl : forall (x : FSet A),
|
|||
|
apD FSet_ind (nl x) = (nlP x (FSet_ind x)).
|
|||
|
|
|||
|
Axiom FSet_ind_beta_nr : forall (x : FSet A),
|
|||
|
apD FSet_ind (nr x) = (nrP x (FSet_ind x)).
|
|||
|
|
|||
|
Axiom FSet_ind_beta_idem : forall (x : A), apD FSet_ind (idem x) = idemP x.
|
|||
|
|
|||
|
|
|||
|
End FSet_induction.
|
|||
|
End definition.
|