mirror of https://github.com/nmvdw/HITs-Examples
102 lines
2.9 KiB
Coq
102 lines
2.9 KiB
Coq
|
(** We show that some operations on [FSet A] only exists when [A] has decidable equality. *)
|
|||
|
Require Import HoTT.
|
|||
|
Require Import FSets.
|
|||
|
|
|||
|
Section membership.
|
|||
|
Context {A : Type} `{Univalence}.
|
|||
|
|
|||
|
Theorem dec_membership
|
|||
|
(H1 : forall (a : A) (X : FSet A), Decidable(a ∈ X))
|
|||
|
(a b : A)
|
|||
|
: Decidable(merely(a = b)).
|
|||
|
Proof.
|
|||
|
destruct (H1 a {|b|}) as [t | t].
|
|||
|
- apply (inl t).
|
|||
|
- apply (inr(fun p => t p)).
|
|||
|
Defined.
|
|||
|
End membership.
|
|||
|
|
|||
|
Section intersection.
|
|||
|
Context {A : Type} `{Univalence}.
|
|||
|
|
|||
|
Variable (int : FSet A -> FSet A -> FSet A)
|
|||
|
(int_member : forall (a : A) (X Y : FSet A),
|
|||
|
a ∈ (int X Y) = BuildhProp(a ∈ X * a ∈ Y)).
|
|||
|
|
|||
|
Theorem dec_intersection (a b : A) : Decidable(merely(a = b)).
|
|||
|
Proof.
|
|||
|
destruct (merely_choice (int {|a|} {|b|})) as [p | p].
|
|||
|
- refine (inr(fun X => _)).
|
|||
|
strip_truncations.
|
|||
|
refine (transport (fun z => a ∈ z) p _).
|
|||
|
rewrite (int_member a {|a|} {|b|}), X.
|
|||
|
split ; apply (tr idpath).
|
|||
|
- left.
|
|||
|
strip_truncations.
|
|||
|
destruct p as [c p].
|
|||
|
rewrite int_member in p.
|
|||
|
destruct p as [p1 p2].
|
|||
|
strip_truncations.
|
|||
|
apply (tr(p1^ @ p2)).
|
|||
|
Defined.
|
|||
|
End intersection.
|
|||
|
|
|||
|
Section subset.
|
|||
|
Context {A : Type} `{Univalence}.
|
|||
|
|
|||
|
Theorem dec_subset
|
|||
|
(H1 : forall (X Y : FSet A), Decidable(X ⊆ Y))
|
|||
|
(a b : A)
|
|||
|
: Decidable(merely(a = b)).
|
|||
|
Proof.
|
|||
|
destruct (dec ({|a|} ⊆ {|b|})) as [t | t].
|
|||
|
- apply (inl t).
|
|||
|
- apply (inr(fun p => t p)).
|
|||
|
Defined.
|
|||
|
End subset.
|
|||
|
|
|||
|
Section decidable_equality.
|
|||
|
Context {A : Type} `{Univalence}.
|
|||
|
|
|||
|
Theorem dec_decidable_equality : DecidablePaths(FSet A)
|
|||
|
-> forall (a b : A), Decidable(merely(a = b)).
|
|||
|
Proof.
|
|||
|
intros H1 a b.
|
|||
|
specialize (H1 {|a|} {|b|}).
|
|||
|
destruct H1 as [p | p].
|
|||
|
- pose (transport (fun z => a ∈ z) p) as t.
|
|||
|
apply (inl (t (tr idpath))).
|
|||
|
- refine (inr (fun n => _)).
|
|||
|
strip_truncations.
|
|||
|
pose (transport (fun z => {|a|} = {|z|}) n) as t.
|
|||
|
apply (p (t idpath)).
|
|||
|
Defined.
|
|||
|
End decidable_equality.
|
|||
|
|
|||
|
Section length.
|
|||
|
Context {A : Type} `{Univalence}.
|
|||
|
|
|||
|
Variable (length : FSet A -> nat)
|
|||
|
(length_singleton : forall (a : A), length {|a|} = 1)
|
|||
|
(length_one : forall (X : FSet A), length X = 1 -> {a : A & X = {|a|}}).
|
|||
|
|
|||
|
Theorem dec_length (a b : A) : Decidable(merely(a = b)).
|
|||
|
Proof.
|
|||
|
destruct (dec (length ({|a|} ∪ {|b|}) = 1)).
|
|||
|
- destruct (length_one _ p) as [c Xc].
|
|||
|
refine (inl _).
|
|||
|
assert (merely(a = c) * merely(b = c)).
|
|||
|
{ split.
|
|||
|
* pose (transport (fun z => a ∈ z) Xc) as t.
|
|||
|
apply (t(tr(inl(tr idpath)))).
|
|||
|
* pose (transport (fun z => b ∈ z) Xc) as t.
|
|||
|
apply (t(tr(inr(tr idpath)))).
|
|||
|
}
|
|||
|
destruct X as [X1 X2] ; strip_truncations.
|
|||
|
apply (tr (X1 @ X2^)).
|
|||
|
- refine (inr(fun p => _)).
|
|||
|
strip_truncations.
|
|||
|
rewrite p, idem in n.
|
|||
|
apply (n (length_singleton b)).
|
|||
|
Defined.
|
|||
|
End length.
|