HITs-Examples/FiniteSets/ordered.v

826 lines
26 KiB
Coq
Raw Normal View History

Require Import HoTT.
Require Import HitTactics.
Require Import definition.
Require Import operations.
Require Import properties.
Definition relation A := A -> A -> Type.
Section TotalOrder.
Class IsTop (A : Type) (R : relation A) (a : A) :=
top_max : forall x, R x a.
Class LessThan (A : Type) :=
leq : relation A.
Class Antisymmetric {A} (R : relation A) :=
antisymmetry : forall x y, R x y -> R y x -> x = y.
Class Total {A} (R : relation A) :=
total : forall x y, x = y \/ R x y \/ R y x.
Class TotalOrder (A : Type) {R : LessThan A} :=
{ TotalOrder_Reflexive :> Reflexive R | 2 ;
TotalOrder_Antisymmetric :> Antisymmetric R | 2;
TotalOrder_Transitive :> Transitive R | 2;
TotalOrder_Total :> Total R | 2; }.
End TotalOrder.
Section minimum.
Context {A : Type}.
Context `{TotalOrder A}.
Definition min (x y : A) : A.
Proof.
destruct (@total _ R _ x y).
- apply x.
- destruct s as [s | s].
* apply x.
* apply y.
Defined.
Lemma min_spec1 x y : R (min x y) x.
Proof.
unfold min.
destruct (total x y) ; simpl.
- reflexivity.
- destruct s as [ | t].
* reflexivity.
* apply t.
Defined.
Lemma min_spec2 x y z : R z x -> R z y -> R z (min x y).
Proof.
intros.
unfold min.
destruct (total x y) as [ | s].
* assumption.
* try (destruct s) ; assumption.
Defined.
Lemma min_comm x y : min x y = min y x.
Proof.
unfold min.
destruct (total x y) ; destruct (total y x) ; simpl.
- assumption.
- destruct s as [s | s] ; auto.
- destruct s as [s | s] ; symmetry ; auto.
- destruct s as [s | s] ; destruct s0 as [s0 | s0] ; try reflexivity.
* apply (@antisymmetry _ R _ _) ; assumption.
* apply (@antisymmetry _ R _ _) ; assumption.
Defined.
Lemma min_idem x : min x x = x.
Proof.
unfold min.
destruct (total x x) ; simpl.
- reflexivity.
- destruct s ; reflexivity.
Defined.
Lemma min_assoc x y z : min (min x y) z = min x (min y z).
Proof.
apply (@antisymmetry _ R _ _).
- apply min_spec2.
* etransitivity ; apply min_spec1.
* apply min_spec2.
** etransitivity ; try (apply min_spec1).
simpl.
rewrite min_comm ; apply min_spec1.
** rewrite min_comm ; apply min_spec1.
- apply min_spec2.
* apply min_spec2.
** apply min_spec1.
** etransitivity.
{ rewrite min_comm ; apply min_spec1. }
apply min_spec1.
* transitivity (min y z); simpl
; rewrite min_comm ; apply min_spec1.
Defined.
Variable (top : A).
Context `{IsTop A R top}.
Lemma min_nr x : min x top = x.
Proof.
intros.
unfold min.
destruct (total x top).
- reflexivity.
- destruct s.
* reflexivity.
* apply (@antisymmetry _ R _ _).
** assumption.
** refine (top_max _). apply _.
Defined.
Lemma min_nl x : min top x = x.
Proof.
rewrite min_comm.
apply min_nr.
Defined.
Lemma min_top_l x y : min x y = top -> x = top.
Proof.
unfold min.
destruct (total x y).
- apply idmap.
- destruct s as [s | s].
* apply idmap.
* intros X.
rewrite X in s.
apply (@antisymmetry _ R _ _).
** apply top_max.
** assumption.
Defined.
Lemma min_top_r x y : min x y = top -> y = top.
Proof.
rewrite min_comm.
apply min_top_l.
Defined.
End minimum.
Section add_top.
Variable (A : Type).
Context `{TotalOrder A}.
Definition Top := A + Unit.
Definition top : Top := inr tt.
Global Instance RTop : LessThan Top.
Proof.
unfold relation.
induction 1 as [a1 | ] ; induction 1 as [a2 | ].
- apply (R a1 a2).
- apply Unit_hp.
- apply False_hp.
- apply Unit_hp.
Defined.
Global Instance rtop_hprop :
is_mere_relation A R -> is_mere_relation Top RTop.
Proof.
intros P a b.
destruct a ; destruct b ; apply _.
Defined.
Global Instance RTopOrder : TotalOrder Top.
Proof.
split.
- intros x ; induction x ; unfold RTop ; simpl.
* reflexivity.
* apply tt.
- intros x y ; induction x as [a1 | ] ; induction y as [a2 | ] ; unfold RTop ; simpl
; try contradiction.
* intros ; f_ap.
apply (@antisymmetry _ R _ _) ; assumption.
* intros ; induction b ; induction b0.
reflexivity.
- intros x y z ; induction x as [a1 | b1] ; induction y as [a2 | b2]
; induction z as [a3 | b3] ; unfold RTop ; simpl
; try contradiction ; intros ; try (apply tt).
transitivity a2 ; assumption.
- intros x y.
unfold RTop ; simpl.
induction x as [a1 | b1] ; induction y as [a2 | b2] ; try (apply (inl idpath)).
* destruct (TotalOrder_Total a1 a2).
** left ; f_ap ; assumption.
** right ; assumption.
* apply (inr(inl tt)).
* apply (inr(inr tt)).
* left ; induction b1 ; induction b2 ; reflexivity.
Defined.
Global Instance top_a_top : IsTop Top RTop top.
Proof.
intro x ; destruct x ; apply tt.
Defined.
End add_top.
Section min_set.
Variable (A : Type).
Context `{TotalOrder A}.
Context `{is_mere_relation A R}.
Context `{Univalence} `{IsHSet A}.
Definition min_set : FSet A -> Top A.
Proof.
hrecursion.
- apply (top A).
- apply inl.
- apply min.
- intros ; symmetry ; apply min_assoc.
- apply min_comm.
- apply min_nl. apply _.
- apply min_nr. apply _.
- intros ; apply min_idem.
Defined.
Definition empty_min : forall (X : FSet A), min_set X = top A -> X = .
Proof.
simple refine (FSet_ind _ _ _ _ _ _ _ _ _ _ _)
; try (intros ; apply path_forall ; intro q ; apply set_path2)
; simpl.
- intros ; reflexivity.
- intros.
unfold top in X.
enough Empty.
{ contradiction. }
refine (not_is_inl_and_inr' (inl a) _ _).
* apply tt.
* rewrite X ; apply tt.
- intros.
assert (min_set x = top A).
{
simple refine (min_top_l _ _ (min_set y) _) ; assumption.
}
rewrite (X X2).
rewrite nl.
assert (min_set y = top A).
{ simple refine (min_top_r _ (min_set x) _ _) ; assumption. }
rewrite (X0 X3).
reflexivity.
Defined.
Definition min_set_spec (a : A) : forall (X : FSet A),
a X -> RTop A (min_set X) (inl a).
Proof.
simple refine (FSet_ind _ _ _ _ _ _ _ _ _ _ _)
; try (intros ; apply path_ishprop)
; simpl.
- contradiction.
- intros.
strip_truncations.
rewrite X.
reflexivity.
- intros.
strip_truncations.
unfold member in X, X0.
destruct X1.
* specialize (X t).
assert (RTop A (min (min_set x) (min_set y)) (min_set x)) as X1.
{ apply min_spec1. }
etransitivity.
{ apply X1. }
assumption.
* specialize (X0 t).
assert (RTop A (min (min_set x) (min_set y)) (min_set y)) as X1.
{ rewrite min_comm ; apply min_spec1. }
etransitivity.
{ apply X1. }
assumption.
Defined.
End min_set.
(*
Ltac eq_neq_tac :=
match goal with
| [ H: ?x <> E, H': ?x = E |- _ ] => destruct H; assumption
end.
Ltac destruct_match_1 :=
repeat match goal with
| [|- match ?X with | _ => _ end ] => destruct X
| [|- ?X = ?Y ] => apply path_ishprop
| [ H: ?x <> E |- Empty ] => destruct H
| [ H1: ?x = E, H2: ?y = E, H3: ?w ?q = E |- ?r = E]
=> rewrite H1, H2 in H3; rewrite nl in H3; rewrite nl in H3
end.
Lemma transport_dom_eq (D1 D2 C: Type) (P: D1 = D2) (f: D1 -> C) :
transport (fun T: Type => T -> C) P f = fun y => f (transport (fun X => X) P^ y).
Proof.
induction P.
hott_simpl.
Defined.
Lemma transport_dom_eq_gen (Ty: Type) (D1 D2: Ty) (C: Type) (P: D1 = D2)
(Q : Ty -> Type) (f: Q D1 -> C) :
transport (fun X: Ty => Q X -> C) P f = fun y => f (transport Q P^ y).
Proof.
induction P.
hott_simpl.
Defined.
2017-06-14 13:08:41 +02:00
(* Lemma min {HFun: Funext} (x: FSet A): x <> ∅ -> A. *)
(* Proof. *)
(* hrecursion x. *)
(* - intro H. destruct H. reflexivity. *)
(* - intros. exact a. *)
(* - intros x y rx ry H. *)
(* apply union_non_empty' in H. *)
(* destruct H. *)
(* + destruct p. specialize (rx fst). exact rx. *)
(* + destruct s. *)
(* * destruct p. specialize (ry snd). exact ry. *)
(* * destruct p. specialize (rx fst). specialize (ry snd). *)
(* destruct (TotalOrder_Total rx ry) as [Heq | [ Hx | Hy ]]. *)
(* ** exact rx. *)
(* ** exact rx. *)
(* ** exact ry. *)
(* - intros. rewrite transport_dom_eq_gen. *)
(* apply path_forall. intro y0. *)
(* destruct ( union_non_empty' x y z *)
(* (transport (fun X : FSet A => X <> ∅) (assoc x y z)^ y0)) *)
(* as [[ G1 G2] | [[ G3 G4] | [G5 G6]]]. *)
(* + pose (G2' := G2). apply eset_union_lr in G2'; destruct G2'. cbn. *)
(* destruct (union_non_empty' x y z y0) as *)
(* [[H'x H'y] | [ [H'a H'b] | [H'c H'd]]]; try eq_neq_tac. *)
(* destruct (union_non_empty' x y H'x). *)
(* ** destruct p. assert (G1 = fst0). apply path_forall. intro. *)
(* apply path_ishprop. rewrite X. reflexivity. *)
(* ** destruct s; destruct p; eq_neq_tac. *)
(* + destruct (union_non_empty' y z G4) as *)
(* [[H'x H'y] | [ [H'a H'b] | [H'c H'd]]]; try eq_neq_tac. *)
(* destruct (union_non_empty' x y z y0). *)
(* ** destruct p. cbn. destruct (union_non_empty' x y fst). *)
(* *** destruct p; eq_neq_tac. *)
(* *** destruct s. destruct p. *)
(* **** assert (H'x = snd0). apply path_forall. intro. *)
(* apply path_ishprop. rewrite X. reflexivity. *)
(* **** destruct p. eq_neq_tac. *)
(* ** destruct s; destruct p; try eq_neq_tac. *)
(* ** destruct (union_non_empty' x y z y0). *)
(* *** destruct p. eq_neq_tac. *)
(* *** destruct s. destruct p. *)
(* **** assert (H'b = snd). apply path_forall. intro. *)
(* apply path_ishprop. rewrite X. reflexivity. *)
(* **** destruct p. assert (x y = E). *)
(* rewrite H'a, G3. apply union_idem. eq_neq_tac. *)
(* ** cbn. destruct (TotalOrder_Total (py H'c) (pz H'd)). *)
(* *** destruct (union_non_empty' x y z y0). *)
(* **** destruct p0. eq_neq_tac. *)
(* **** destruct s. *)
(* ***** destruct p0. rewrite G3, nl in fst. eq_neq_tac. *)
(* ***** destruct p0. destruct (union_non_empty' x y fst). *)
(* ****** destruct p0. eq_neq_tac. *)
(* ****** destruct s. *)
(* ******* destruct p0. *)
(* destruct (TotalOrder_Total (py snd0) (pz snd)). *)
(* f_ap. apply path_forall. intro. *)
(* apply path_ishprop. *)
(* destruct s. f_ap. apply path_forall. intro. *)
(* apply path_ishprop. *)
(* rewrite p. f_ap. apply path_forall. intro. *)
(* apply path_ishprop. *)
(* ******* destruct p0. eq_neq_tac. *)
(* *** destruct (union_non_empty' x y z y0). *)
(* **** destruct p. eq_neq_tac. *)
(* **** destruct s0. destruct p. rewrite comm in fst. *)
(* apply eset_union_l in fst. eq_neq_tac. *)
(* destruct p. *)
(* destruct (union_non_empty' x y fst). *)
(* ***** destruct p; eq_neq_tac. *)
(* ***** destruct s0. destruct p. *)
(* destruct (TotalOrder_Total (py snd0) (pz snd)); *)
(* destruct s; try (f_ap; apply path_forall; intro; *)
(* apply path_ishprop). *)
(* rewrite p. f_ap; apply path_forall; intro; *)
(* apply path_ishprop. *)
(* destruct s0. f_ap; apply path_forall; intro; *)
(* apply path_ishprop. *)
(* assert (snd0 = H'c). apply path_forall; intro; *)
(* apply path_ishprop. *)
(* assert (snd = H'd). apply path_forall; intro; *)
(* apply path_ishprop. *)
(* rewrite <- X0 in r. rewrite X in r0. *)
(* apply TotalOrder_Antisymmetric; assumption. *)
(* destruct s0. *)
(* assert (snd0 = H'c). apply path_forall; intro; *)
(* apply path_ishprop. *)
(* assert (snd = H'd). apply path_forall; intro; *)
(* apply path_ishprop. *)
(* rewrite <- X in r. rewrite X0 in r0. *)
(* apply TotalOrder_Antisymmetric; assumption. *)
(* f_ap; apply path_forall; intro; *)
(* apply path_ishprop. *)
(* destruct p; eq_neq_tac. *)
(* + cbn. destruct (union_non_empty' y z G6). *)
(* ** destruct p. destruct ( union_non_empty' x y z y0). *)
(* *** destruct p. destruct (union_non_empty' x y fst0). *)
(* **** destruct p; eq_neq_tac. *)
(* **** destruct s; destruct p. eq_neq_tac. *)
(* assert (fst1 = G5). apply path_forall; intro; *)
(* apply path_ishprop. *)
(* assert (fst = snd1). apply path_forall; intro; *)
(* apply path_ishprop. *)
(* rewrite X, X0. *)
(* destruct (TotalOrder_Total (px G5) (py snd1)). *)
(* reflexivity. *)
(* destruct s; reflexivity. *)
(* *** destruct s; destruct p; eq_neq_tac. *)
(* ** destruct (union_non_empty' x y z y0). *)
(* *** destruct p. destruct s; destruct p; eq_neq_tac. *)
(* *** destruct s. destruct p. destruct s0. destruct p. *)
(* apply eset_union_l in fst0. eq_neq_tac. *)
(* **** destruct p. *)
(* assert (snd = snd0). apply path_forall; intro; *)
(* apply path_ishprop. *)
2017-06-14 13:08:41 +02:00
(* destruct (union_non_empty' x y fst0). *)
(* destruct p. *)
(* assert (fst1 = G5). apply path_forall; intro; *)
(* apply path_ishprop. *)
(* assert (fst = snd1). apply set_path2. *)
(* ***** rewrite X0. rewrite <- X. reflexivity. *)
(* ***** destruct s; destruct p; eq_neq_tac. *)
(* **** destruct s0. destruct p0. destruct p. *)
(* ***** apply eset_union_l in fst. eq_neq_tac. *)
(* ***** destruct p, p0. *)
(* assert (snd0 = snd). apply path_forall; intro; *)
(* apply path_ishprop. *)
(* rewrite X. *)
(* destruct (union_non_empty' x y fst0). *)
(* destruct p; eq_neq_tac. *)
(* destruct s. destruct p; eq_neq_tac. *)
(* destruct p. *)
(* assert (fst = snd1). apply path_forall; intro; *)
(* apply path_ishprop. *)
(* assert (fst1 = G5). apply path_forall; intro; *)
(* apply path_ishprop. *)
(* rewrite <- X0. rewrite X1. *)
(* destruct (TotalOrder_Total (py fst) (pz snd)). *)
(* ****** rewrite <- p. *)
(* destruct (TotalOrder_Total (px G5) (py fst)). *)
(* rewrite <- p0. *)
(* destruct (TotalOrder_Total (px G5) (px G5)). *)
(* reflexivity. *)
(* destruct s; reflexivity. *)
(* destruct s. destruct (TotalOrder_Total (px G5) (py fst)). *)
(* reflexivity. *)
(* destruct s. *)
(* reflexivity. *)
(* apply TotalOrder_Antisymmetric; assumption. *)
(* destruct (TotalOrder_Total (py fst) (py fst)). *)
(* reflexivity. *)
(* destruct s; *)
(* reflexivity. *)
(* ****** destruct s. *)
(* destruct (TotalOrder_Total (px G5) (py fst)). *)
(* destruct (TotalOrder_Total (px G5) (pz snd)). *)
(* reflexivity. *)
(* destruct s. *)
(* reflexivity. rewrite <- p in r. *)
(* apply TotalOrder_Antisymmetric; assumption. *)
(* destruct s. *)
(* destruct ( TotalOrder_Total (px G5) (pz snd)). *)
(* reflexivity. *)
(* destruct s. reflexivity. *)
(* apply (TotalOrder_Transitive (px G5)) in r. *)
(* apply TotalOrder_Antisymmetric; assumption. *)
(* assumption. *)
(* destruct (TotalOrder_Total (py fst) (pz snd)). reflexivity. *)
(* destruct s. reflexivity. *)
(* apply TotalOrder_Antisymmetric; assumption. *)
(* ******* *)
(* destruct ( TotalOrder_Total (px G5) (py fst)). *)
(* reflexivity. *)
(* destruct s. destruct (TotalOrder_Total (px G5) (pz snd)). *)
(* reflexivity. destruct s; reflexivity. *)
(* destruct ( TotalOrder_Total (px G5) (pz snd)). *)
(* rewrite <- p. *)
(* destruct (TotalOrder_Total (py fst) (px G5)). *)
(* apply symmetry; assumption. *)
(* destruct s. rewrite <- p in r. *)
(* apply TotalOrder_Antisymmetric; assumption. *)
(* reflexivity. destruct s. *)
(* assert ((py fst) = (pz snd)). apply TotalOrder_Antisymmetric. *)
(* apply (TotalOrder_Transitive (py fst) (px G5)); assumption. *)
(* assumption. rewrite X2. assert (px G5 = pz snd). *)
(* apply TotalOrder_Antisymmetric. assumption. *)
(* apply (TotalOrder_Transitive (pz snd) (py fst)); assumption. *)
(* rewrite X3. *)
(* destruct ( TotalOrder_Total (pz snd) (pz snd)). *)
(* reflexivity. destruct s; reflexivity. *)
(* destruct (TotalOrder_Total (py fst) (pz snd)). *)
(* apply TotalOrder_Antisymmetric. assumption. rewrite p. *)
(* apply (TotalOrder_Reflexive). destruct s. *)
(* apply TotalOrder_Antisymmetric; assumption. reflexivity. *)
(* - intros. rewrite transport_dom_eq_gen. *)
(* apply path_forall. intro y0. cbn. *)
(* destruct *)
(* (union_non_empty' x y *)
(* (transport (fun X : FSet A => X <> ∅) (comm x y)^ y0)) as *)
(* [[Hx Hy] | [ [Ha Hb] | [Hc Hd]]]; *)
(* destruct (union_non_empty' y x y0) as *)
(* [[H'x H'y] | [ [H'a H'b] | [H'c H'd]]]; *)
(* try (eq_neq_tac). *)
(* assert (Hx = H'b). apply path_forall. intro. *)
(* apply path_ishprop. rewrite X. reflexivity. *)
(* assert (Hb = H'x). apply path_forall. intro. *)
(* apply path_ishprop. rewrite X. reflexivity. *)
(* assert (Hd = H'c). apply path_forall. intro. *)
(* apply path_ishprop. rewrite X. *)
(* assert (H'd = Hc). apply path_forall. intro. *)
(* apply path_ishprop. *)
(* rewrite X0. rewrite <- X. *)
(* destruct *)
(* (TotalOrder_Total (px Hc) (py Hd)) as [G1 | [G2 | G3]]; *)
(* destruct *)
(* (TotalOrder_Total (py Hd) (px Hc)) as [T1 | [T2 | T3]]; *)
(* try (assumption); *)
(* try (reflexivity); *)
(* try (apply symmetry; assumption); *)
(* try (apply TotalOrder_Antisymmetric; assumption). *)
2017-06-14 13:08:41 +02:00
(* - intros. rewrite transport_dom_eq_gen. *)
(* apply path_forall. intro y. *)
(* destruct (union_non_empty' ∅ x (transport (fun X : FSet A => X <> ∅) (nl x)^ y)). *)
(* destruct p. eq_neq_tac. *)
(* destruct s. *)
(* destruct p. *)
(* assert (y = snd). *)
(* apply path_forall. intro. *)
(* apply path_ishprop. rewrite X. reflexivity. *)
(* destruct p. destruct fst. *)
(* - intros. rewrite transport_dom_eq_gen. *)
(* apply path_forall. intro y. *)
(* destruct (union_non_empty' x ∅ (transport (fun X : FSet A => X <> ∅) (nr x)^ y)). *)
(* destruct p. assert (y = fst). apply path_forall. intro. *)
(* apply path_ishprop. rewrite X. reflexivity. *)
(* destruct s. *)
(* destruct p. *)
(* eq_neq_tac. *)
(* destruct p. *)
(* destruct snd. *)
(* - intros. rewrite transport_dom_eq_gen. *)
(* apply path_forall. intro y. *)
(* destruct ( union_non_empty' {|x|} {|x|} (transport (fun X : FSet A => X <> ∅) (idem x)^ y)). *)
(* reflexivity. *)
(* destruct s. *)
(* reflexivity. *)
(* destruct p. *)
(* cbn. destruct (TotalOrder_Total x x). reflexivity. *)
(* destruct s; reflexivity. *)
(* Defined. *)
Definition minfset {HFun: Funext} :
FSet A -> { Y: (FSet A) & (Y = E) + { a: A & Y = L a } }.
intro X.
hinduction X.
- exists E. left. reflexivity.
- intro a. exists (L a). right. exists a. reflexivity.
- intros IH1 IH2.
destruct IH1 as [R1 HR1].
destruct IH2 as [R2 HR2].
destruct HR1.
destruct HR2.
exists E; left. reflexivity.
destruct s as [a Ha]. exists (L a). right.
exists a. reflexivity.
destruct HR2.
destruct s as [a Ha].
exists (L a). right. exists a. reflexivity.
destruct s as [a1 Ha1].
destruct s0 as [a2 Ha2].
assert (a1 = a2 \/ R a1 a2 \/ R a2 a1).
apply TotalOrder_Total.
destruct X.
exists (L a1). right. exists a1. reflexivity.
destruct s.
exists (L a1). right. exists a1. reflexivity.
exists (L a2). right. exists a2. reflexivity.
- cbn. intros R1 R2 R3.
destruct R1 as [Res1 HR1].
destruct HR1 as [HR1E | HR1S].
destruct R2 as [Res2 HR2].
destruct HR2 as [HR2E | HR2S].
destruct R3 as [Res3 HR3].
destruct HR3 as [HR3E | HR3S].
+ cbn. reflexivity.
+ cbn. reflexivity.
+ cbn. destruct R3 as [Res3 HR3].
destruct HR3 as [HR3E | HR3S].
* cbn. reflexivity.
* destruct HR2S as [a2 Ha2].
destruct HR3S as [a3 Ha3].
destruct (TotalOrder_Total a2 a3).
** cbn. reflexivity.
** destruct s. cbn. reflexivity.
cbn. reflexivity.
+ destruct HR1S as [a1 Ha1].
destruct R2 as [Res2 HR2].
destruct HR2 as [HR2E | HR2S].
destruct R3 as [Res3 HR3].
destruct HR3 as [HR3E | HR3S].
* cbn. reflexivity.
* destruct HR3S as [a3 Ha3].
destruct (TotalOrder_Total a1 a3).
reflexivity.
destruct s; reflexivity.
* destruct HR2S as [a2 Ha2].
destruct R3 as [Res3 HR3].
destruct HR3 as [HR3E | HR3S].
cbn. destruct (TotalOrder_Total a1 a2).
cbn. reflexivity.
destruct s.
cbn. reflexivity.
cbn. reflexivity.
destruct HR3S as [a3 Ha3].
destruct (TotalOrder_Total a2 a3).
** rewrite p.
destruct (TotalOrder_Total a1 a3).
rewrite p0.
destruct ( TotalOrder_Total a3 a3).
reflexivity.
destruct s; reflexivity.
destruct s. cbn.
destruct (TotalOrder_Total a1 a3).
reflexivity.
destruct s. reflexivity.
assert (a1 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity.
cbn. destruct (TotalOrder_Total a3 a3).
reflexivity.
destruct s; reflexivity.
** destruct s.
*** cbn. destruct (TotalOrder_Total a1 a2).
cbn. destruct (TotalOrder_Total a1 a3).
reflexivity.
destruct s. reflexivity.
rewrite <- p in r.
assert (a1 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity.
destruct s. cbn.
destruct (TotalOrder_Total a1 a3).
reflexivity.
destruct s. reflexivity.
assert (R a1 a3).
apply (TotalOrder_Transitive a1 a2); assumption.
assert (a1 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X0. reflexivity.
cbn. destruct (TotalOrder_Total a2 a3).
reflexivity.
destruct s.
reflexivity.
assert (a2 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity.
*** cbn. destruct (TotalOrder_Total a1 a3).
rewrite p. destruct (TotalOrder_Total a3 a2).
cbn. destruct (TotalOrder_Total a3 a3).
reflexivity. destruct s; reflexivity.
destruct s. cbn.
destruct (TotalOrder_Total a3 a3).
reflexivity. destruct s; reflexivity.
cbn. destruct (TotalOrder_Total a2 a3).
rewrite p0.
reflexivity.
destruct s.
assert (a2 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity. reflexivity.
destruct s.
cbn.
destruct (TotalOrder_Total a1 a2).
cbn.
destruct (TotalOrder_Total a1 a3).
reflexivity.
assert (a1 = a3).
apply TotalOrder_Antisymmetric. assumption.
rewrite <- p in r. assumption.
destruct s. reflexivity. rewrite X. reflexivity.
destruct s. cbn.
destruct (TotalOrder_Total a1 a3). reflexivity.
destruct s. reflexivity.
assert (a1 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity.
cbn. destruct (TotalOrder_Total a2 a3).
rewrite p in r1.
assert (a2 = a1).
transitivity a3.
assumption.
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity.
destruct s.
assert (a1 = a2).
apply TotalOrder_Antisymmetric.
apply (TotalOrder_Transitive a1 a3); assumption.
assumption.
rewrite X. reflexivity.
assert (a1 = a3).
apply TotalOrder_Antisymmetric.
assumption.
apply (TotalOrder_Transitive a3 a2); assumption.
rewrite X. reflexivity.
destruct ( TotalOrder_Total a1 a2).
cbn.
destruct (TotalOrder_Total a1 a3).
rewrite p0.
reflexivity.
destruct s.
assert (a1 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity. reflexivity.
destruct s.
cbn.
destruct (TotalOrder_Total a1 a3 ).
rewrite p.
reflexivity.
destruct s.
assert (a1 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity. reflexivity.
cbn.
destruct (TotalOrder_Total a1 a3 ).
assert (a2 = a3).
rewrite p in r1.
apply TotalOrder_Antisymmetric; assumption.
rewrite X. destruct (TotalOrder_Total a3 a3). reflexivity.
destruct s; reflexivity.
destruct s.
destruct (TotalOrder_Total a2 a3).
rewrite p.
reflexivity.
destruct s.
assert (a2 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity.
reflexivity.
cbn. destruct (TotalOrder_Total a2 a3).
rewrite p.
reflexivity.
destruct s.
assert (a2 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity. reflexivity.
- cbn. intros R1 R2.
destruct R1 as [La1 HR1].
destruct HR1 as [HR1E | HR1S].
destruct R2 as [La2 HR2].
destruct HR2 as [HR2E | HR2S].
reflexivity.
reflexivity.
destruct R2 as [La2 HR2].
destruct HR2 as [HR2E | HR2S].
reflexivity.
destruct HR1S as [a1 Ha1].
destruct HR2S as [a2 Ha2].
destruct (TotalOrder_Total a1 a2).
rewrite p.
destruct (TotalOrder_Total a2 a2).
reflexivity.
destruct s; reflexivity.
destruct s.
destruct (TotalOrder_Total a2 a1).
rewrite p.
reflexivity.
destruct s.
assert (a1 = a2).
apply TotalOrder_Antisymmetric; assumption.
rewrite X.
reflexivity.
reflexivity.
destruct (TotalOrder_Total a2 a1).
rewrite p.
reflexivity.
destruct s.
reflexivity.
assert (a1 = a2).
apply TotalOrder_Antisymmetric; assumption.
rewrite X.
reflexivity.
- cbn. intro R. destruct R as [La HR].
destruct HR. rewrite <- p. reflexivity.
destruct s as [a1 H].
apply (path_sigma' _ H^).
rewrite transport_sum.
f_ap.
rewrite transport_sigma.
simpl.
simple refine (path_sigma' _ _ _ ).
apply transport_const.
apply set_path2.
- intros R. cbn.
destruct R as [ R HR].
destruct HR as [HE | Ha ].
rewrite <- HE. reflexivity.
destruct Ha as [a Ha].
apply (path_sigma' _ Ha^).
rewrite transport_sum.
f_ap.
rewrite transport_sigma.
simpl.
simple refine (path_sigma' _ _ _ ).
apply transport_const.
apply set_path2.
- cbn. intro.
destruct (TotalOrder_Total x x).
reflexivity.
destruct s.
reflexivity.
reflexivity.
Defined.
*)