2017-06-21 14:10:59 +02:00
|
|
|
|
(* This is a /bad/ definition of FSets, without the 0-truncation.
|
|
|
|
|
Here we show that the resulting type is not an h-set. *)
|
|
|
|
|
|
|
|
|
|
Require Import HoTT.
|
|
|
|
|
Require Import HitTactics.
|
|
|
|
|
Module Export FSet.
|
|
|
|
|
|
2017-08-02 11:40:03 +02:00
|
|
|
|
Section FSet.
|
|
|
|
|
Variable A : Type.
|
|
|
|
|
|
|
|
|
|
Private Inductive FSet : Type :=
|
|
|
|
|
| E : FSet
|
|
|
|
|
| L : A -> FSet
|
|
|
|
|
| U : FSet -> FSet -> FSet.
|
|
|
|
|
|
|
|
|
|
Notation "{| x |}" := (L x).
|
|
|
|
|
Infix "∪" := U (at level 8, right associativity).
|
|
|
|
|
Notation "∅" := E.
|
|
|
|
|
|
|
|
|
|
Axiom assoc : forall (x y z : FSet ),
|
|
|
|
|
x ∪ (y ∪ z) = (x ∪ y) ∪ z.
|
|
|
|
|
|
|
|
|
|
Axiom comm : forall (x y : FSet),
|
|
|
|
|
x ∪ y = y ∪ x.
|
|
|
|
|
|
|
|
|
|
Axiom nl : forall (x : FSet),
|
|
|
|
|
∅ ∪ x = x.
|
|
|
|
|
|
|
|
|
|
Axiom nr : forall (x : FSet),
|
|
|
|
|
x ∪ ∅ = x.
|
|
|
|
|
|
|
|
|
|
Axiom idem : forall (x : A),
|
|
|
|
|
{| x |} ∪ {|x|} = {|x|}.
|
|
|
|
|
|
|
|
|
|
End FSet.
|
|
|
|
|
|
|
|
|
|
Arguments E {_}.
|
|
|
|
|
Arguments U {_} _ _.
|
|
|
|
|
Arguments L {_} _.
|
|
|
|
|
Arguments assoc {_} _ _ _.
|
|
|
|
|
Arguments comm {_} _ _.
|
|
|
|
|
Arguments nl {_} _.
|
|
|
|
|
Arguments nr {_} _.
|
|
|
|
|
Arguments idem {_} _.
|
|
|
|
|
|
|
|
|
|
Section FSet_induction.
|
|
|
|
|
Variable A: Type.
|
|
|
|
|
Variable (P : FSet A -> Type).
|
|
|
|
|
Variable (eP : P E).
|
|
|
|
|
Variable (lP : forall a: A, P (L a)).
|
|
|
|
|
Variable (uP : forall (x y: FSet A), P x -> P y -> P (U x y)).
|
|
|
|
|
Variable (assocP : forall (x y z : FSet A)
|
|
|
|
|
(px: P x) (py: P y) (pz: P z),
|
|
|
|
|
assoc x y z #
|
|
|
|
|
(uP x (U y z) px (uP y z py pz))
|
|
|
|
|
=
|
|
|
|
|
(uP (U x y) z (uP x y px py) pz)).
|
|
|
|
|
Variable (commP : forall (x y: FSet A) (px: P x) (py: P y),
|
|
|
|
|
comm x y #
|
|
|
|
|
uP x y px py = uP y x py px).
|
|
|
|
|
Variable (nlP : forall (x : FSet A) (px: P x),
|
|
|
|
|
nl x # uP E x eP px = px).
|
|
|
|
|
Variable (nrP : forall (x : FSet A) (px: P x),
|
|
|
|
|
nr x # uP x E px eP = px).
|
|
|
|
|
Variable (idemP : forall (x : A),
|
|
|
|
|
idem x # uP (L x) (L x) (lP x) (lP x) = lP x).
|
|
|
|
|
|
|
|
|
|
(* Induction principle *)
|
|
|
|
|
Fixpoint FSet_ind
|
|
|
|
|
(x : FSet A)
|
|
|
|
|
{struct x}
|
|
|
|
|
: P x
|
|
|
|
|
:= (match x return _ -> _ -> _ -> _ -> _ -> P x with
|
|
|
|
|
| E => fun _ => fun _ => fun _ => fun _ => fun _ => eP
|
|
|
|
|
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => lP a
|
|
|
|
|
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => uP y z
|
|
|
|
|
(FSet_ind y)
|
|
|
|
|
(FSet_ind z)
|
|
|
|
|
end) assocP commP nlP nrP idemP.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Axiom FSet_ind_beta_assoc : forall (x y z : FSet A),
|
|
|
|
|
apD FSet_ind (assoc x y z) =
|
|
|
|
|
(assocP x y z (FSet_ind x) (FSet_ind y) (FSet_ind z)).
|
|
|
|
|
|
|
|
|
|
Axiom FSet_ind_beta_comm : forall (x y : FSet A),
|
|
|
|
|
apD FSet_ind (comm x y) = (commP x y (FSet_ind x) (FSet_ind y)).
|
|
|
|
|
|
|
|
|
|
Axiom FSet_ind_beta_nl : forall (x : FSet A),
|
|
|
|
|
apD FSet_ind (nl x) = (nlP x (FSet_ind x)).
|
|
|
|
|
|
|
|
|
|
Axiom FSet_ind_beta_nr : forall (x : FSet A),
|
|
|
|
|
apD FSet_ind (nr x) = (nrP x (FSet_ind x)).
|
|
|
|
|
|
|
|
|
|
Axiom FSet_ind_beta_idem : forall (x : A), apD FSet_ind (idem x) = idemP x.
|
|
|
|
|
End FSet_induction.
|
|
|
|
|
|
|
|
|
|
Section FSet_recursion.
|
|
|
|
|
|
|
|
|
|
Variable A : Type.
|
|
|
|
|
Variable P : Type.
|
|
|
|
|
Variable e : P.
|
|
|
|
|
Variable l : A -> P.
|
|
|
|
|
Variable u : P -> P -> P.
|
|
|
|
|
Variable assocP : forall (x y z : P), u x (u y z) = u (u x y) z.
|
|
|
|
|
Variable commP : forall (x y : P), u x y = u y x.
|
|
|
|
|
Variable nlP : forall (x : P), u e x = x.
|
|
|
|
|
Variable nrP : forall (x : P), u x e = x.
|
|
|
|
|
Variable idemP : forall (x : A), u (l x) (l x) = l x.
|
|
|
|
|
|
|
|
|
|
Definition FSet_rec : FSet A -> P.
|
|
|
|
|
Proof.
|
|
|
|
|
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _) ; try (intros ; simple refine ((transport_const _ _) @ _)) ; cbn.
|
|
|
|
|
- apply e.
|
|
|
|
|
- apply l.
|
|
|
|
|
- intros x y ; apply u.
|
|
|
|
|
- apply assocP.
|
|
|
|
|
- apply commP.
|
|
|
|
|
- apply nlP.
|
|
|
|
|
- apply nrP.
|
|
|
|
|
- apply idemP.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition FSet_rec_beta_assoc : forall (x y z : FSet A),
|
|
|
|
|
ap FSet_rec (assoc x y z)
|
|
|
|
|
=
|
|
|
|
|
assocP (FSet_rec x) (FSet_rec y) (FSet_rec z).
|
|
|
|
|
Proof.
|
|
|
|
|
intros.
|
|
|
|
|
unfold FSet_rec.
|
|
|
|
|
eapply (cancelL (transport_const (assoc x y z) _)).
|
|
|
|
|
simple refine ((apD_const _ _)^ @ _).
|
|
|
|
|
apply FSet_ind_beta_assoc.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition FSet_rec_beta_comm : forall (x y : FSet A),
|
|
|
|
|
ap FSet_rec (comm x y)
|
|
|
|
|
=
|
|
|
|
|
commP (FSet_rec x) (FSet_rec y).
|
|
|
|
|
Proof.
|
|
|
|
|
intros.
|
|
|
|
|
unfold FSet_rec.
|
|
|
|
|
eapply (cancelL (transport_const (comm x y) _)).
|
|
|
|
|
simple refine ((apD_const _ _)^ @ _).
|
|
|
|
|
apply FSet_ind_beta_comm.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition FSet_rec_beta_nl : forall (x : FSet A),
|
|
|
|
|
ap FSet_rec (nl x)
|
|
|
|
|
=
|
|
|
|
|
nlP (FSet_rec x).
|
|
|
|
|
Proof.
|
|
|
|
|
intros.
|
|
|
|
|
unfold FSet_rec.
|
|
|
|
|
eapply (cancelL (transport_const (nl x) _)).
|
|
|
|
|
simple refine ((apD_const _ _)^ @ _).
|
|
|
|
|
apply FSet_ind_beta_nl.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition FSet_rec_beta_nr : forall (x : FSet A),
|
|
|
|
|
ap FSet_rec (nr x)
|
|
|
|
|
=
|
|
|
|
|
nrP (FSet_rec x).
|
|
|
|
|
Proof.
|
|
|
|
|
intros.
|
|
|
|
|
unfold FSet_rec.
|
|
|
|
|
eapply (cancelL (transport_const (nr x) _)).
|
|
|
|
|
simple refine ((apD_const _ _)^ @ _).
|
|
|
|
|
apply FSet_ind_beta_nr.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition FSet_rec_beta_idem : forall (a : A),
|
|
|
|
|
ap FSet_rec (idem a)
|
|
|
|
|
=
|
|
|
|
|
idemP a.
|
|
|
|
|
Proof.
|
|
|
|
|
intros.
|
|
|
|
|
unfold FSet_rec.
|
|
|
|
|
eapply (cancelL (transport_const (idem a) _)).
|
|
|
|
|
simple refine ((apD_const _ _)^ @ _).
|
|
|
|
|
apply FSet_ind_beta_idem.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
End FSet_recursion.
|
|
|
|
|
|
|
|
|
|
Instance FSet_recursion A : HitRecursion (FSet A) := {
|
|
|
|
|
indTy := _; recTy := _;
|
|
|
|
|
H_inductor := FSet_ind A; H_recursor := FSet_rec A }.
|
2017-06-21 14:10:59 +02:00
|
|
|
|
|
|
|
|
|
End FSet.
|
|
|
|
|
|
|
|
|
|
Notation "{| x |}" := (L x).
|
|
|
|
|
Infix "∪" := U (at level 8, right associativity).
|
|
|
|
|
Notation "∅" := E.
|
|
|
|
|
|
|
|
|
|
Section set_sphere.
|
2017-08-02 11:40:03 +02:00
|
|
|
|
From HoTT.HIT Require Import Circle.
|
|
|
|
|
From HoTT Require Import UnivalenceAxiom.
|
|
|
|
|
Instance S1_recursion : HitRecursion S1 := {
|
|
|
|
|
indTy := _; recTy := _;
|
|
|
|
|
H_inductor := S1_ind; H_recursor := S1_rec }.
|
|
|
|
|
|
|
|
|
|
Variable A : Type.
|
|
|
|
|
|
|
|
|
|
Definition f (x : S1) : x = x.
|
|
|
|
|
Proof.
|
|
|
|
|
hrecursion x.
|
|
|
|
|
- exact loop.
|
|
|
|
|
- etransitivity.
|
|
|
|
|
eapply (@transport_paths_FlFr S1 S1 idmap idmap).
|
|
|
|
|
hott_simpl.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition S1op (x y : S1) : S1.
|
|
|
|
|
Proof.
|
|
|
|
|
hrecursion y.
|
|
|
|
|
- exact x. (* x + base = x *)
|
|
|
|
|
- apply f.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma S1op_nr (x : S1) : S1op x base = x.
|
|
|
|
|
Proof. reflexivity. Defined.
|
|
|
|
|
|
|
|
|
|
Lemma S1op_nl (x : S1) : S1op base x = x.
|
|
|
|
|
Proof.
|
|
|
|
|
hrecursion x.
|
|
|
|
|
- exact loop.
|
|
|
|
|
- etransitivity.
|
|
|
|
|
apply (@transport_paths_FlFr _ _ (fun x => S1op base x) idmap _ _ loop loop).
|
|
|
|
|
hott_simpl.
|
|
|
|
|
apply moveR_pM. apply moveR_pM. hott_simpl.
|
|
|
|
|
etransitivity. apply (ap_V (S1op base) loop).
|
|
|
|
|
f_ap. apply S1_rec_beta_loop.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma S1op_assoc (x y z : S1) : S1op x (S1op y z) = S1op (S1op x y) z.
|
|
|
|
|
Proof.
|
|
|
|
|
hrecursion z.
|
|
|
|
|
- reflexivity.
|
|
|
|
|
- etransitivity.
|
|
|
|
|
apply (@transport_paths_FlFr _ _ (fun z => S1op x (S1op y z)) (S1op (S1op x y)) _ _ loop idpath).
|
|
|
|
|
hott_simpl.
|
|
|
|
|
apply moveR_Mp. hott_simpl.
|
|
|
|
|
rewrite S1_rec_beta_loop.
|
|
|
|
|
rewrite ap_compose.
|
|
|
|
|
rewrite S1_rec_beta_loop.
|
|
|
|
|
hrecursion y.
|
|
|
|
|
+ symmetry. apply S1_rec_beta_loop.
|
|
|
|
|
+ apply is1type_S1.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
Lemma S1op_comm (x y : S1) : S1op x y = S1op y x.
|
|
|
|
|
Proof.
|
|
|
|
|
hrecursion x.
|
|
|
|
|
- apply S1op_nl.
|
|
|
|
|
- hrecursion y.
|
|
|
|
|
+ rewrite transport_paths_FlFr. hott_simpl.
|
|
|
|
|
rewrite S1_rec_beta_loop. reflexivity.
|
|
|
|
|
+ apply is1type_S1.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition FSet_to_S : FSet A -> S1.
|
|
|
|
|
Proof.
|
|
|
|
|
hrecursion.
|
|
|
|
|
- exact base.
|
|
|
|
|
- intro a. exact base.
|
|
|
|
|
- exact S1op.
|
|
|
|
|
- apply S1op_assoc.
|
|
|
|
|
- apply S1op_comm.
|
|
|
|
|
- apply S1op_nl.
|
|
|
|
|
- apply S1op_nr.
|
|
|
|
|
- simpl. reflexivity.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma FSet_S_ap : (nl (@E A)) = (nr E) -> idpath = loop.
|
|
|
|
|
Proof.
|
|
|
|
|
intros H.
|
|
|
|
|
enough (ap FSet_to_S (nl E) = ap FSet_to_S (nr E)) as H'.
|
|
|
|
|
- rewrite FSet_rec_beta_nl in H'.
|
|
|
|
|
rewrite FSet_rec_beta_nr in H'.
|
|
|
|
|
simpl in H'. unfold S1op_nr in H'.
|
|
|
|
|
exact H'^.
|
|
|
|
|
- f_ap.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma FSet_not_hset : IsHSet (FSet A) -> False.
|
|
|
|
|
Proof.
|
|
|
|
|
intros H.
|
|
|
|
|
enough (idpath = loop).
|
|
|
|
|
- assert (S1_encode _ idpath = S1_encode _ (loopexp loop (pos Int.one))) as H' by f_ap.
|
|
|
|
|
rewrite S1_encode_loopexp in H'. simpl in H'. symmetry in H'.
|
|
|
|
|
apply (pos_neq_zero H').
|
|
|
|
|
- apply FSet_S_ap.
|
|
|
|
|
apply set_path2.
|
|
|
|
|
Qed.
|
2017-06-21 14:10:59 +02:00
|
|
|
|
|
|
|
|
|
End set_sphere.
|