mirror of https://github.com/nmvdw/HITs-Examples
69 lines
1.7 KiB
Coq
69 lines
1.7 KiB
Coq
|
Require Import HoTT.
|
||
|
|
||
|
Definition lor (X Y : hProp) : hProp := BuildhProp (Trunc (-1) (sum X Y)).
|
||
|
|
||
|
Infix "\/" := lor.
|
||
|
|
||
|
Section lor_props.
|
||
|
Variable X Y Z : hProp.
|
||
|
Context `{Univalence}.
|
||
|
|
||
|
Theorem lor_assoc : (X \/ (Y \/ Z)) = ((X \/ Y) \/ Z).
|
||
|
Proof.
|
||
|
apply path_iff_hprop ; cbn.
|
||
|
* simple refine (Trunc_ind _ _).
|
||
|
intros [x | yz] ; cbn.
|
||
|
+ apply (tr (inl (tr (inl x)))).
|
||
|
+ simple refine (Trunc_ind _ _ yz).
|
||
|
intros [y | z].
|
||
|
++ apply (tr (inl (tr (inr y)))).
|
||
|
++ apply (tr (inr z)).
|
||
|
* simple refine (Trunc_ind _ _).
|
||
|
intros [xy | z] ; cbn.
|
||
|
+ simple refine (Trunc_ind _ _ xy).
|
||
|
intros [x | y].
|
||
|
++ apply (tr (inl x)).
|
||
|
++ apply (tr (inr (tr (inl y)))).
|
||
|
+ apply (tr (inr (tr (inr z)))).
|
||
|
Defined.
|
||
|
|
||
|
Theorem lor_comm : (X \/ Y) = (Y \/ X).
|
||
|
Proof.
|
||
|
apply path_iff_hprop ; cbn.
|
||
|
* simple refine (Trunc_ind _ _).
|
||
|
intros [x | y].
|
||
|
+ apply (tr (inr x)).
|
||
|
+ apply (tr (inl y)).
|
||
|
* simple refine (Trunc_ind _ _).
|
||
|
intros [y | x].
|
||
|
+ apply (tr (inr y)).
|
||
|
+ apply (tr (inl x)).
|
||
|
Defined.
|
||
|
|
||
|
Theorem lor_nl : (False_hp \/ X) = X.
|
||
|
Proof.
|
||
|
apply path_iff_hprop ; cbn.
|
||
|
* simple refine (Trunc_ind _ _).
|
||
|
intros [ | x].
|
||
|
+ apply Empty_rec.
|
||
|
+ apply x.
|
||
|
* apply (fun x => tr (inr x)).
|
||
|
Defined.
|
||
|
|
||
|
Theorem lor_nr : (X \/ False_hp) = X.
|
||
|
Proof.
|
||
|
apply path_iff_hprop ; cbn.
|
||
|
* simple refine (Trunc_ind _ _).
|
||
|
intros [x | ].
|
||
|
+ apply x.
|
||
|
+ apply Empty_rec.
|
||
|
* apply (fun x => tr (inl x)).
|
||
|
Defined.
|
||
|
|
||
|
Theorem lor_idem : (X \/ X) = X.
|
||
|
Proof.
|
||
|
apply path_iff_hprop ; cbn.
|
||
|
- simple refine (Trunc_ind _ _).
|
||
|
intros [x | x] ; apply x.
|
||
|
- apply (fun x => tr (inl x)).
|
||
|
Defined.
|