mirror of https://github.com/nmvdw/HITs-Examples
193 lines
3.6 KiB
Coq
193 lines
3.6 KiB
Coq
|
Require Export HoTT.
|
||
|
Require Import HitTactics.
|
||
|
|
||
|
Module Export modulo.
|
||
|
|
||
|
Private Inductive Mod2 : Type0 :=
|
||
|
| Z : Mod2
|
||
|
| succ : Mod2 -> Mod2.
|
||
|
|
||
|
Axiom mod : Z = succ(succ Z).
|
||
|
|
||
|
Fixpoint Mod2_ind
|
||
|
(P : Mod2 -> Type)
|
||
|
(a : P Z)
|
||
|
(s : forall (n : Mod2), P n -> P (succ n))
|
||
|
(mod' : mod # a = s (succ Z) (s Z a))
|
||
|
(x : Mod2)
|
||
|
{struct x}
|
||
|
: P x
|
||
|
:=
|
||
|
(match x return _ -> P x with
|
||
|
| Z => fun _ => a
|
||
|
| succ n => fun _ => s n ((Mod2_ind P a s mod') n)
|
||
|
end) mod'.
|
||
|
|
||
|
Axiom Mod2_ind_beta_mod : forall
|
||
|
(P : Mod2 -> Type)
|
||
|
(a : P Z)
|
||
|
(s : forall (n : Mod2), P n -> P (succ n))
|
||
|
(mod' : mod # a = s (succ Z) (s Z a))
|
||
|
, apD (Mod2_ind P a s mod') mod = mod'.
|
||
|
|
||
|
Fixpoint Mod2_rec
|
||
|
(P : Type)
|
||
|
(a : P)
|
||
|
(s : P -> P)
|
||
|
(mod' : a = s (s a))
|
||
|
(x : Mod2)
|
||
|
{struct x}
|
||
|
: P
|
||
|
:=
|
||
|
(match x return _ -> P with
|
||
|
| Z => fun _ => a
|
||
|
| succ n => fun _ => s ((Mod2_rec P a s mod') n)
|
||
|
end) mod'.
|
||
|
|
||
|
Axiom Mod2_rec_beta_mod : forall
|
||
|
(P : Type)
|
||
|
(a : P)
|
||
|
(s : P -> P)
|
||
|
(mod' : a = s (s a))
|
||
|
, ap (Mod2_rec P a s mod') mod = mod'.
|
||
|
|
||
|
Instance: HitRecursion Mod2 := {
|
||
|
indTy := _; recTy := _;
|
||
|
H_inductor := Mod2_ind;
|
||
|
H_recursor := Mod2_rec }.
|
||
|
|
||
|
End modulo.
|
||
|
|
||
|
Definition negate : Mod2 -> Mod2.
|
||
|
Proof.
|
||
|
hrecursion.
|
||
|
- apply Z.
|
||
|
- intros. apply (succ H).
|
||
|
- simpl. apply mod.
|
||
|
Defined.
|
||
|
|
||
|
|
||
|
Definition Bool_to_Mod2 : Bool -> Mod2.
|
||
|
Proof.
|
||
|
intro b.
|
||
|
destruct b.
|
||
|
+ apply (succ Z).
|
||
|
+ apply Z.
|
||
|
Defined.
|
||
|
|
||
|
Definition Mod2_to_Bool : Mod2 -> Bool.
|
||
|
Proof.
|
||
|
intro x.
|
||
|
hrecursion x.
|
||
|
- exact false.
|
||
|
- exact negb.
|
||
|
- simpl. reflexivity.
|
||
|
Defined.
|
||
|
|
||
|
Theorem eq1 : forall n : Bool, Mod2_to_Bool (Bool_to_Mod2 n) = n.
|
||
|
Proof.
|
||
|
intro b.
|
||
|
destruct b; compute; reflexivity.
|
||
|
Qed.
|
||
|
|
||
|
Theorem Bool_to_Mod2_negb : forall x : Bool,
|
||
|
succ (Bool_to_Mod2 x) = Bool_to_Mod2 (negb x).
|
||
|
Proof.
|
||
|
intros.
|
||
|
destruct x; compute.
|
||
|
+ apply mod^.
|
||
|
+ apply reflexivity.
|
||
|
Defined.
|
||
|
|
||
|
Theorem eq2 : forall n : Mod2, Bool_to_Mod2 (Mod2_to_Bool n) = n.
|
||
|
Proof.
|
||
|
intro n.
|
||
|
hinduction n.
|
||
|
- reflexivity.
|
||
|
- intros n IHn.
|
||
|
symmetry. etransitivity. apply (ap succ IHn^).
|
||
|
etransitivity. apply Bool_to_Mod2_negb.
|
||
|
hott_simpl.
|
||
|
- rewrite @HoTT.Types.Paths.transport_paths_FlFr.
|
||
|
hott_simpl.
|
||
|
rewrite ap_compose.
|
||
|
enough (ap Mod2_to_Bool mod = idpath).
|
||
|
+ rewrite X. hott_simpl.
|
||
|
+ apply (Mod2_rec_beta_mod Bool false negb 1).
|
||
|
Defined.
|
||
|
|
||
|
Theorem adj :
|
||
|
forall x : Mod2, eq1 (Mod2_to_Bool x) = ap Mod2_to_Bool (eq2 x).
|
||
|
Proof.
|
||
|
intro x.
|
||
|
apply hset_bool.
|
||
|
Defined.
|
||
|
|
||
|
Instance: IsEquiv Mod2_to_Bool.
|
||
|
Proof.
|
||
|
apply (BuildIsEquiv Mod2 Bool Mod2_to_Bool Bool_to_Mod2 eq1 eq2 adj).
|
||
|
Qed.
|
||
|
|
||
|
Definition Mod2_value : Mod2 <~> Bool := BuildEquiv _ _ Mod2_to_Bool _.
|
||
|
|
||
|
Instance mod2_hset : IsHSet Mod2.
|
||
|
Proof.
|
||
|
apply (trunc_equiv Bool Mod2_value^-1).
|
||
|
Defined.
|
||
|
|
||
|
Theorem modulo2 : forall n : Mod2, n = succ(succ n).
|
||
|
Proof.
|
||
|
hinduction.
|
||
|
- apply mod.
|
||
|
- intros n p.
|
||
|
apply (ap succ p).
|
||
|
- apply set_path2.
|
||
|
Defined.
|
||
|
|
||
|
Definition plus : Mod2 -> Mod2 -> Mod2.
|
||
|
Proof.
|
||
|
intros n.
|
||
|
hrecursion.
|
||
|
- exact n.
|
||
|
- apply succ.
|
||
|
- apply modulo2.
|
||
|
Defined.
|
||
|
|
||
|
Lemma plus_x_Z_x : forall x, plus x Z = x.
|
||
|
Proof.
|
||
|
hinduction; cbn.
|
||
|
- reflexivity.
|
||
|
- intros n. refine (ap succ).
|
||
|
- apply set_path2.
|
||
|
Defined.
|
||
|
|
||
|
Lemma plus_S_x_S : forall x y,
|
||
|
plus (succ x) y = succ (plus x y).
|
||
|
Proof.
|
||
|
intros x.
|
||
|
hinduction; cbn.
|
||
|
- reflexivity.
|
||
|
- intros n Hn. refine (ap succ Hn).
|
||
|
- apply set_path2.
|
||
|
Defined.
|
||
|
|
||
|
Lemma plus_x_x_Z : forall x, plus x x = Z.
|
||
|
Proof.
|
||
|
hinduction.
|
||
|
- reflexivity.
|
||
|
- intros n Hn. cbn.
|
||
|
refine (ap succ (plus_S_x_S n n) @ _).
|
||
|
refine (ap (succ o succ) Hn @ _).
|
||
|
apply mod^.
|
||
|
- apply set_path2.
|
||
|
Defined.
|
||
|
|
||
|
Definition mult : Mod2 -> Mod2 -> Mod2.
|
||
|
intros x. hrecursion.
|
||
|
- exact Z.
|
||
|
- intros y. exact (plus x y).
|
||
|
- simpl.
|
||
|
refine (_ @ ap (plus x) (plus_x_Z_x _)^).
|
||
|
apply (plus_x_x_Z x)^.
|
||
|
Defined.
|