HITs-Examples/FiniteSets/lattice.v

172 lines
3.4 KiB
Coq
Raw Normal View History

2017-08-01 15:12:59 +02:00
(* Typeclass for lattices *)
Require Import HoTT.
Definition operation (A : Type) := A -> A -> A.
Section Defs.
Variable A : Type.
Variable f : A -> A -> A.
Class Commutative :=
commutative : forall x y, f x y = f y x.
Class Associative :=
associativity : forall x y z, f (f x y) z = f x (f y z).
Class Idempotent :=
idempotency : forall x, f x x = x.
Variable g : operation A.
Class Absorption :=
absrob : forall x y, f x (g x y) = x.
Variable n : A.
Class NeutralL :=
neutralityL : forall x, f x n = x.
Class NeutralR :=
neutralityR : forall x, f n x = x.
End Defs.
Arguments Commutative {_} _.
Arguments Associative {_} _.
Arguments Idempotent {_} _.
Arguments NeutralL {_} _ _.
Arguments NeutralR {_} _ _.
Arguments Absorption {_} _ _.
Section Lattice.
Variable A : Type.
Variable min max : operation A.
Variable empty : A.
Class Lattice :=
{
commutative_min :> Commutative min ;
commutative_max :> Commutative max ;
associative_min :> Associative min ;
associative_max :> Associative max ;
idempotent_min :> Idempotent min ;
idempotent_max :> Idempotent max ;
2017-08-01 15:12:59 +02:00
neutralL_min :> NeutralL max empty ;
neutralR_min :> NeutralR max empty ;
absorption_min_max :> Absorption min max ;
absorption_max_min :> Absorption max min
}.
End Lattice.
Arguments Lattice {_} _ _ _.
Section BoolLattice.
2017-08-01 15:12:59 +02:00
Ltac solve :=
let x := fresh in
repeat (intro x ; destruct x)
; compute
; auto
; try contradiction.
2017-08-01 15:12:59 +02:00
Instance orb_com : Commutative orb.
Proof.
solve.
Defined.
2017-08-01 15:12:59 +02:00
Instance andb_com : Commutative andb.
Proof.
solve.
Defined.
2017-08-01 15:12:59 +02:00
Instance orb_assoc : Associative orb.
Proof.
solve.
Defined.
2017-08-01 15:12:59 +02:00
Instance andb_assoc : Associative andb.
Proof.
solve.
Defined.
2017-08-01 15:12:59 +02:00
Instance orb_idem : Idempotent orb.
Proof.
solve.
Defined.
2017-08-01 15:12:59 +02:00
Instance andb_idem : Idempotent andb.
Proof.
solve.
Defined.
2017-08-01 15:12:59 +02:00
Instance orb_nl : NeutralL orb false.
Proof.
solve.
Defined.
2017-08-01 15:12:59 +02:00
Instance orb_nr : NeutralR orb false.
Proof.
solve.
Defined.
2017-08-01 15:12:59 +02:00
Instance bool_absorption_orb_andb : Absorption orb andb.
Proof.
solve.
Defined.
2017-08-01 15:12:59 +02:00
Instance bool_absorption_andb_orb : Absorption andb orb.
Proof.
solve.
Defined.
2017-08-01 15:12:59 +02:00
Global Instance lattice_bool : Lattice andb orb false :=
{ commutative_min := _ ;
commutative_max := _ ;
associative_min := _ ;
associative_max := _ ;
idempotent_min := _ ;
idempotent_max := _ ;
neutralL_min := _ ;
neutralR_min := _ ;
absorption_min_max := _ ;
absorption_max_min := _
}.
2017-08-01 15:12:59 +02:00
Definition and_true : forall b, andb b true = b.
Proof.
solve.
Defined.
Definition and_false : forall b, andb b false = false.
Proof.
solve.
Defined.
Definition dist : forall b b b,
andb b (orb b b) = orb (andb b b) (andb b b).
Proof.
solve.
Defined.
Definition dist : forall b b b,
orb b (andb b b) = andb (orb b b) (orb b b).
Proof.
solve.
Defined.
Definition max_min : forall b b,
orb (andb b b) b = b.
Proof.
solve.
Defined.
End BoolLattice.
2017-06-19 17:54:44 +02:00
Hint Resolve
2017-08-01 15:12:59 +02:00
orb_com andb_com orb_assoc andb_assoc orb_idem andb_idem orb_nl orb_nr
bool_absorption_orb_andb bool_absorption_andb_orb and_true and_false
dist dist max_min
2017-06-19 17:54:44 +02:00
: bool_lattice_hints.