HITs-Examples/FiniteSets/Sub.v

104 lines
3.0 KiB
Coq
Raw Normal View History

2017-08-03 12:27:43 +02:00
Require Import HoTT.
2017-08-08 19:56:39 +02:00
Require Import disjunction lattice notation.
2017-08-03 12:27:43 +02:00
Section subobjects.
Variable A : Type.
Definition Sub := A -> hProp.
2017-08-03 15:07:53 +02:00
2017-08-08 19:56:39 +02:00
Global Instance sub_empty : hasEmpty Sub := fun _ => False_hp.
Global Instance sub_union : hasUnion Sub := max_fun.
Global Instance sub_intersection : hasIntersection Sub := min_fun.
Global Instance sub_singleton : hasSingleton Sub A
:= fun a b => BuildhProp (Trunc (-1) (b = a)).
Global Instance sub_membership : hasMembership Sub A := fun a X => X a.
Global Instance sub_comprehension : hasComprehension Sub A
:= fun ϕ X a => BuildhProp (X a * (ϕ a = true)).
Global Instance sub_subset `{Univalence} : hasSubset Sub
:= fun X Y => BuildhProp (forall a, X a -> Y a).
2017-08-03 15:07:53 +02:00
2017-08-03 12:27:43 +02:00
End subobjects.
2017-08-03 15:07:53 +02:00
Section sub_classes.
Context {A : Type}.
2017-08-03 12:27:43 +02:00
Variable C : (A -> hProp) -> hProp.
Context `{Univalence}.
Instance blah : Lattice (Sub A).
Proof.
unfold Sub.
apply _.
Defined.
2017-08-08 19:56:39 +02:00
Definition closedUnion := forall X Y, C X -> C Y -> C (X Y).
Definition closedIntersection := forall X Y, C X -> C Y -> C (X Y).
Definition closedEmpty := C .
Definition closedSingleton := forall a, C {|a|}.
Definition hasDecidableEmpty := forall X, C X -> hor (X = ) (hexists (fun a => a X)).
2017-08-03 15:07:53 +02:00
End sub_classes.
Section isIn.
Variable A : Type.
Variable C : (A -> hProp) -> hProp.
Context `{Univalence}.
Context {HS : closedSingleton C} {HIn : forall X, C X -> forall a, Decidable (X a)}.
2017-08-03 15:07:53 +02:00
Theorem decidable_A_isIn : forall a b : A, Decidable (Trunc (-1) (b = a)).
Proof.
intros.
unfold Decidable, closedSingleton in *.
2017-08-08 19:56:39 +02:00
pose (HIn {|a|} (HS a) b).
2017-08-03 15:07:53 +02:00
destruct s.
- unfold singleton in t.
left.
apply t.
- right.
intro p.
unfold singleton in n.
strip_truncations.
contradiction (n (tr p)).
Defined.
End isIn.
Section intersect.
Variable A : Type.
Variable C : (Sub A) -> hProp.
Context `{Univalence}.
2017-08-03 15:10:01 +02:00
2017-08-03 23:01:57 +02:00
Global Instance hprop_lem : forall (T : Type) (Ttrunc : IsHProp T), IsHProp (T + ~T).
2017-08-03 15:10:01 +02:00
Proof.
intros.
apply (equiv_hprop_allpath _)^-1.
intros [x | nx] [y | ny] ; try f_ap ; try (apply Ttrunc) ; try contradiction.
- apply equiv_hprop_allpath. apply _.
Defined.
2017-08-03 15:07:53 +02:00
Context
{HI : closedIntersection C} {HE : closedEmpty C}
{HS : closedSingleton C} {HDE : hasDecidableEmpty C}.
2017-08-03 15:07:53 +02:00
Theorem decidable_A_intersect : forall a b : A, Decidable (Trunc (-1) (b = a)).
Proof.
intros.
unfold Decidable, closedEmpty, closedIntersection, closedSingleton, hasDecidableEmpty in *.
2017-08-08 19:56:39 +02:00
pose (HI {|a|} {|b|} (HS a) (HS b)) as IntAB.
pose (HDE ({|a|} {|b|}) IntAB) as IntE.
2017-08-03 15:07:53 +02:00
refine (@Trunc_rec _ _ _ _ _ IntE) ; intros [p | p] ; unfold min_fun, singleton in p.
- right.
intro q.
2017-08-08 19:56:39 +02:00
strip_truncations.
rewrite q in p.
enough (a ) as X.
{ apply X. }
rewrite <- p.
cbn.
split ; apply (tr idpath).
2017-08-03 15:07:53 +02:00
- strip_truncations.
destruct p as [a0 [t1 t2]].
strip_truncations.
apply (inl (tr (t2^ @ t1))).
Defined.
2017-08-03 15:10:01 +02:00
End intersect.