HITs-Examples/FiniteSets/subobjects/k_finite.v

416 lines
11 KiB
Coq
Raw Normal View History

Require Import HoTT HitTactics.
2017-09-25 13:44:11 +02:00
Require Import sub lattice_interface monad_interface lattice_examples FSets.
Section k_finite.
2017-08-03 15:10:01 +02:00
Context (A : Type).
Context `{Univalence}.
Definition map (X : FSet A) : Sub A := fun a => a X.
Global Instance map_injective : IsEmbedding map.
Proof.
apply isembedding_isinj_hset. (* We use the fact that both [FSet A] and [Sub A] are hSets *)
intros X Y HXY.
apply fset_ext.
apply apD10. exact HXY.
Defined.
Definition Kf_sub_intern (B : Sub A) := exists (X : FSet A), B = map X.
Global Instance Kf_sub_hprop B : IsHProp (Kf_sub_intern B).
Proof.
apply hprop_allpath.
intros [X PX] [Y PY].
assert (X = Y) as HXY.
{ apply fset_ext. apply apD10.
transitivity B; [ symmetry | ]; assumption. }
apply path_sigma with HXY. simpl.
apply set_path2.
Defined.
Definition Kf_sub (B : Sub A) : hProp := BuildhProp (Kf_sub_intern B).
Definition Kf : hProp := Kf_sub (fun x => True).
Instance: IsHProp {X : FSet A | forall a : A, map X a}.
Proof.
2017-08-03 15:10:01 +02:00
apply hprop_allpath.
intros [X PX] [Y PY].
assert (X = Y) as HXY.
{ apply fset_ext. intros a.
unfold map in *.
apply path_hprop.
apply equiv_iff_hprop; intros.
+ apply PY.
+ apply PX. }
apply path_sigma with HXY. simpl.
apply path_forall. intro.
apply path_ishprop.
Defined.
Lemma Kf_unfold : Kf <~> (exists (X : FSet A), forall (a : A), map X a).
Proof.
apply equiv_equiv_iff_hprop. apply _. apply _.
split.
- intros [X PX]. exists X. intro a.
rewrite <- PX. done.
- intros [X PX]. exists X. apply path_forall; intro a.
apply path_hprop.
symmetry. apply if_hprop_then_equiv_Unit; [ apply _ | ].
apply PX.
Defined.
End k_finite.
2017-08-03 15:07:53 +02:00
2017-08-03 15:10:01 +02:00
Arguments map {_} {_} _.
Ltac kf_unfold :=
repeat match goal with
| [ H : Kf ?t |- _ ] => apply Kf_unfold in H
| [ H : @trunctype_type _ (Kf ?t) |- _ ] => apply Kf_unfold in H
| [ |- Kf ?t ] => apply Kf_unfold
| [ |- @trunctype_type _ (Kf _) ] => apply Kf_unfold
end.
2017-08-03 15:07:53 +02:00
Section structure_k_finite.
2017-08-03 15:10:01 +02:00
Context (A : Type).
2017-08-03 15:07:53 +02:00
Context `{Univalence}.
Lemma map_union : forall X Y : FSet A, map (X Y) = (map X) (map Y).
2017-08-03 15:07:53 +02:00
Proof.
intros.
reflexivity.
2017-08-03 15:07:53 +02:00
Defined.
2017-08-03 15:10:01 +02:00
Lemma k_finite_union : closedUnion (Kf_sub A).
2017-08-03 15:07:53 +02:00
Proof.
unfold closedUnion, Kf_sub, Kf_sub_intern.
intros X Y [SX XP] [SY YP].
exists (SX SY).
2017-08-03 15:07:53 +02:00
rewrite map_union.
rewrite XP, YP.
reflexivity.
Defined.
Lemma k_finite_empty : closedEmpty (Kf_sub A).
2017-08-03 15:07:53 +02:00
Proof.
exists .
2017-08-03 15:07:53 +02:00
reflexivity.
Defined.
Lemma k_finite_singleton : closedSingleton (Kf_sub A).
2017-08-03 15:07:53 +02:00
Proof.
intro.
exists {|a|}.
2017-08-03 15:07:53 +02:00
cbn.
apply path_forall.
intro z.
2017-08-03 15:07:53 +02:00
reflexivity.
Defined.
2017-08-03 15:10:01 +02:00
Lemma k_finite_hasDecidableEmpty : hasDecidableEmpty (Kf_sub A).
2017-08-03 15:07:53 +02:00
Proof.
unfold hasDecidableEmpty, closedEmpty, Kf_sub, Kf_sub_intern, map.
2017-08-03 15:07:53 +02:00
intros.
destruct X0 as [SX EX].
rewrite EX.
2017-08-14 12:43:15 +02:00
destruct (merely_choice SX) as [SXE | H1].
2017-08-03 15:07:53 +02:00
- rewrite SXE.
apply (tr (inl idpath)).
- apply (tr (inr H1)).
Defined.
End structure_k_finite.
Section k_properties.
Context `{Univalence}.
(* Some closure properties *)
(* https://ncatlab.org/nlab/show/finite+object#closure_of_finite_objects *)
Lemma Kf_Empty : Kf Empty.
Proof.
kf_unfold.
exists . done.
Defined.
Lemma Kf_Unit : Kf Unit.
Proof.
kf_unfold.
exists {|tt|}.
intros []. simpl.
apply (tr (idpath)).
Defined.
2017-09-25 12:38:03 +02:00
Lemma Kf_surjection {X Y : Type} (f : X -> Y) `{IsSurjection f} :
Kf X -> Kf Y.
Proof.
intros HX. apply Kf_unfold. apply Kf_unfold in HX.
destruct HX as [Xf HXf].
exists (fmap FSet f Xf).
intro y.
pose (x' := center (merely (hfiber f y))).
simple refine (@Trunc_rec (-1) (hfiber f y) _ _ _ x'). clear x'; intro x.
destruct x as [x Hfx]. rewrite <- Hfx.
apply fmap_isIn.
apply (HXf x).
Defined.
Lemma Kf_sum {A B : Type} : Kf A -> Kf B -> Kf (A + B).
Proof.
intros HA HB.
kf_unfold.
destruct HA as [X HX].
destruct HB as [Y HY].
2017-09-25 12:38:03 +02:00
exists (disjoint_sum X Y).
intros [a | b]; simpl; apply tr; [ left | right ];
apply fmap_isIn.
+ apply (HX a).
+ apply (HY b).
Defined.
2017-09-25 13:44:11 +02:00
Lemma Kf_sum_inv {A B : Type} : Kf (A + B) -> Kf A.
Proof.
intros HAB. kf_unfold.
destruct HAB as [X HX].
pose (f := fun z => match (z : A + B) with
| inl a => ({|a|} : FSet A)
| inr b =>
end).
exists (mjoin (fset_fmap f X)).
2017-09-25 13:44:11 +02:00
intro a.
apply mjoin_isIn.
2017-09-25 13:44:11 +02:00
specialize (HX (inl a)).
exists {|a|}. split; [ | apply tr; reflexivity ].
apply (fmap_isIn f (inl a) X).
apply HX.
Defined.
Lemma Kf_subterm (A : hProp) : Decidable A <~> Kf A.
Proof.
apply equiv_iff_hprop.
{ intros Hdec.
kf_unfold.
destruct Hdec as [HA | HA].
- exists {|HA|}. simpl.
intros a. apply tr.
apply A.
- exists . intros a.
apply (HA a). }
{ intros HA.
kf_unfold.
destruct HA as [X HX].
destruct (merely_choice X) as [HX2 | HX2].
+ rewrite HX2 in HX.
right. unfold not.
apply HX.
+ strip_truncations.
destruct HX2 as [a ?].
left. apply a. }
Defined.
Lemma Kf_prod {A B : Type} : Kf A -> Kf B -> Kf (A * B).
Proof.
intros HA HB.
kf_unfold.
destruct HA as [X HA].
destruct HB as [Y HB].
exists (product X Y).
intros [a b]. unfold map.
rewrite product_isIn.
split.
- apply (HA a).
- apply (HB b).
Defined.
2017-08-16 17:13:08 +02:00
Lemma S1_Kfinite : Kf S1.
Proof.
apply Kf_unfold.
exists {|base|}.
intro a. simpl.
simple refine (S1_ind (fun z => Trunc (-1) (z = base)) _ _ a); simpl.
- apply (tr loop).
- apply path_ishprop.
Defined.
2017-08-17 22:43:22 +02:00
Lemma I_Kfinite : Kf interval.
Proof.
apply Kf_unfold.
exists {|Interval.one|}.
intro a. simpl.
simple refine (interval_ind (fun z => Trunc (-1) (z = Interval.one)) _ _ _ a); simpl.
- apply (tr seg).
- apply (tr idpath).
- apply path_ishprop.
Defined.
(** A type is Kuratowski-finite iff its set of connected components if Kuratowski-finite.
In order to prove this we need to generalize to finite subobjects first. *)
(* Extend the set truncation to subobjects *)
Definition trsub {A : Type} (B : Sub A) : Sub (Trunc 0 A) := Trunc_rec B.
Lemma trsub_equiv {A : Type} (B : Sub A) :
forall a, B a = trsub B (tr a).
Proof. reflexivity. Qed.
Lemma trsub_top `{Univalence} {A : Type} :
(fun _ => ) = trsub (fun _ : A => ).
Proof.
apply path_forall. refine (Trunc_ind _ _). done.
Defined.
(* We prove the lemma for set truncation of subobjects *)
(* TODO: clean up the proof *)
Lemma kf_sub_conn (A : Type) (B : Sub A):
Kf_sub (Trunc 0 A) (trsub B) -> Kf_sub A B.
Proof.
simpl. unfold Kf_sub_intern.
intros [X HX].
revert HX. revert B.
hinduction X; try (intros; apply path_ishprop).
- intros B HB. exists .
apply path_forall; intro a.
simpl. by rewrite trsub_equiv, HB.
- refine (Trunc_ind _ _).
intros b B Hb.
exists {|b|}.
apply path_forall; intro a.
simpl. rewrite trsub_equiv, Hb.
simpl.
apply path_iff_hprop.
+ intros X. strip_truncations.
by apply equiv_path_Tr.
+ intros X. strip_truncations.
apply tr. f_ap.
- intros X Y HX HY B HB.
specialize (HX (fun a => (tr a) X)).
specialize (HY (fun a => (tr a) Y)).
assert ( trsub (fun a : A => (tr a) X) = map X ) as F1.
{ apply path_forall.
refine (Trunc_ind _ _). intro a.
reflexivity. }
assert ( trsub (fun a : A => (tr a) Y) = map Y ) as F2.
{ apply path_forall.
refine (Trunc_ind _ _). intro a.
reflexivity. }
specialize (HX F1). specialize (HY F2). clear F1 F2.
destruct HX as [X' HX'].
destruct HY as [Y' HY'].
exists (X' Y').
apply path_forall; intro a.
rewrite trsub_equiv, HB. simpl.
by rewrite <- HX', <- HY'.
Defined.
(* TODO: show the implication in the other direction *)
Lemma kf_conn (A : Type) :
Kf (Trunc 0 A) -> Kf A.
Proof.
intros HA. apply kf_sub_conn.
by rewrite <- trsub_top.
Defined.
2017-08-17 22:43:22 +02:00
(* TODO: for a proper proof first show that set truncation of S1 is a point *)
Lemma S1_Kfinite_alt : Kf S1.
Proof.
apply kf_conn.
apply Kf_unfold.
exists {|tr base|}. simpl.
refine (Trunc_ind _ _).
simple refine (S1_ind _ _ _); simpl.
- by apply tr.
- apply path_ishprop.
Defined.
End k_properties.
Section alternative_definition.
Context `{Univalence} {A : Type}.
Definition kf_sub (P : A -> hProp) :=
BuildhProp(forall (K' : (A -> hProp) -> hProp),
K' -> (forall a, K' {|a|}) -> (forall U V, K' U -> K' V -> K'(U V))
-> K' P).
Local Ltac help_solve :=
repeat (let x := fresh in intro x ; destruct x) ; intros
; try (simple refine (path_sigma _ _ _ _ _)) ; try (apply path_ishprop) ; simpl
; unfold union, sub_union, join, join_fun
; apply path_forall
; intro z
; eauto with lattice_hints typeclass_instances.
Definition fset_to_k : FSet A -> {P : A -> hProp | kf_sub P}.
Proof.
assert (IsHSet {P : A -> hProp | kf_sub P}) as Hs.
{ apply trunc_sigma. }
simple refine (FSet_rec A {P : A -> hProp | kf_sub P} Hs _ _ _ _ _ _ _ _).
- exists .
simpl. auto.
- intros a.
exists {|a|}.
simpl. auto.
- intros [P1 HP1] [P2 HP2].
exists (P1 P2).
intros ? ? ? HP.
apply HP.
* apply HP1 ; assumption.
* apply HP2 ; assumption.
- help_solve. (* TODO: eauto *) apply associativity.
- help_solve. apply commutativity.
- help_solve. apply left_identity.
- help_solve. apply right_identity.
- help_solve. apply binary_idempotent.
Defined.
Definition k_to_fset : {P : A -> hProp | kf_sub P} -> FSet A.
Proof.
intros [P HP].
destruct (HP (Kf_sub _) (k_finite_empty _) (k_finite_singleton _) (k_finite_union _)).
assumption.
Defined.
Lemma fset_to_k_to_fset X : k_to_fset(fset_to_k X) = X.
Proof.
hinduction X ; try (intros ; apply path_ishprop) ; try (intros ; reflexivity).
intros X1 X2 HX1 HX2.
refine ((ap (fun z => _ z) HX2^)^ @ (ap (fun z => z X2) HX1^)^).
Defined.
Lemma k_to_fset_to_k (X : {P : A -> hProp | kf_sub P}) : fset_to_k(k_to_fset X) = X.
Proof.
simple refine (path_sigma _ _ _ _ _) ; try (apply path_ishprop).
apply path_forall.
intro z.
destruct X as [P HP].
unfold kf_sub in HP.
unfold k_to_fset.
pose (HP (Kf_sub A) (k_finite_empty A) (k_finite_singleton A) (k_finite_union A)) as t.
assert (HP (Kf_sub A) (k_finite_empty A) (k_finite_singleton A) (k_finite_union A) = t) as X0.
{ reflexivity. }
rewrite X0 ; clear X0.
destruct t as [X HX].
assert (P z = map X z) as X1.
{ rewrite HX. reflexivity. }
simpl.
rewrite X1 ; clear HX X1.
hinduction X ; try (intros ; apply path_ishprop).
- apply idpath.
- apply (fun a => idpath).
- intros X1 X2 H1 H2.
rewrite <- H1, <- H2.
reflexivity.
Defined.
Theorem equiv_definition : IsEquiv fset_to_k.
Proof.
apply isequiv_biinv.
split.
- exists k_to_fset.
intro x ; apply fset_to_k_to_fset.
- exists k_to_fset.
intro x ; apply k_to_fset_to_k.
Defined.
End alternative_definition.