HITs-Examples/Integers.v

835 lines
18 KiB
Coq
Raw Normal View History

2017-01-02 13:08:36 +01:00
Require Import HoTT.
Require Export HoTT.
Module Export Ints.
2017-08-04 14:46:08 +02:00
Private Inductive Z : Type :=
| zero_Z : Z
| succ : Z -> Z
| pred : Z -> Z.
Axiom inv1 : forall n : Z, n = pred(succ n).
Axiom inv2 : forall n : Z, n = succ(pred n).
Axiom ZisSet : IsHSet Z.
Section Z_induction.
Variable (P : Z -> Type)
(H : forall n, IsHSet (P n))
(a : P zero_Z)
(s : forall (n : Z), P n -> P (succ n))
(p : forall (n : Z), P n -> P (pred n))
(i1 : forall (n : Z) (m : P n), (inv1 n) # m = p (succ n) (s (n) m))
(i2 : forall (n : Z) (m : P n), (inv2 n) # m = s (pred n) (p (n) m)).
Fixpoint Z_ind
(x : Z)
{struct x}
: P x
:=
(match x return _ -> _ -> P x with
| zero_Z => fun _ => fun _ => a
| succ n => fun _ => fun _ => s n (Z_ind n)
| pred n => fun _ => fun _ => p n (Z_ind n)
end) i1 i2.
Axiom Z_ind_beta_inv1 : forall (n : Z), apD Z_ind (inv1 n) = i1 n (Z_ind n).
Axiom Z_ind_beta_inv2 : forall (n : Z), apD Z_ind (inv2 n) = i2 n (Z_ind n).
End Z_induction.
Section Z_recursion.
Variable (P : Type)
(H : IsHSet P)
(a : P)
(s : P -> P)
(p : P -> P)
(i1 : forall (m : P), m = p(s m))
(i2 : forall (m : P), m = s(p m)).
Definition Z_rec : Z -> P.
Proof.
simple refine (Z_ind _ _ _ _ _ _) ; simpl.
- apply a.
- intro ; apply s.
- intro ; apply p.
- intros.
refine (transport_const _ _ @ (i1 _)).
- intros.
refine (transport_const _ _ @ (i2 _)).
Defined.
Definition Z_rec_beta_inv1 (n : Z) : ap Z_rec (inv1 n) = i1 (Z_rec n).
Proof.
unfold Z_rec.
eapply (cancelL (transport_const (inv1 n) _)).
simple refine ((apD_const _ _)^ @ _).
apply Z_ind_beta_inv1.
Defined.
Definition Z_rec_beta_inv2 (n : Z) : ap Z_rec (inv2 n) = i2 (Z_rec n).
Proof.
unfold Z_rec.
eapply (cancelL (transport_const (inv2 n) _)).
simple refine ((apD_const _ _)^ @ _).
apply Z_ind_beta_inv2.
Defined.
End Z_recursion.
2017-01-02 13:08:36 +01:00
End Ints.
2017-08-04 14:46:08 +02:00
Section ring_Z.
Fixpoint nat_to_Z (n : nat) : Z :=
match n with
| 0 => zero_Z
| S m => succ (nat_to_Z m)
end.
Definition plus : Z -> Z -> Z := fun x => Z_rec Z x succ pred inv1 inv2.
Lemma plus_0n : forall x, plus zero_Z x = x.
Proof.
simple refine (Z_ind _ _ _ _ _ _) ; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros y Hy.
apply (ap succ Hy).
- intros y Hy.
apply (ap pred Hy).
Defined.
Definition plus_n0 x : plus x zero_Z = x := idpath x.
Lemma plus_Sn x : forall y, plus (succ x) y = succ(plus x y).
Proof.
simple refine (Z_ind _ _ _ _ _ _) ; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros y Hy.
apply (ap succ Hy).
- intros y Hy.
apply (ap pred Hy @ (inv1 (plus x y))^ @ inv2 (plus x y)).
Defined.
Definition plus_nS x y : plus x (succ y) = succ(plus x y) := idpath.
Lemma plus_Pn x : forall y, plus (pred x) y = pred (plus x y).
Proof.
simple refine (Z_ind _ _ _ _ _ _) ; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros y Hy.
apply (ap succ Hy @ (inv2 (plus x y))^ @ inv1 (plus x y)).
- intros y Hy.
apply (ap pred Hy).
Defined.
Definition plus_nP x y : plus x (pred y) = pred(plus x y) := idpath.
Lemma plus_comm x : forall y : Z, plus x y = plus y x.
Proof.
simple refine (Z_ind _ _ _ _ _ _)
; simpl ; try (intros ; apply set_path2).
- apply (plus_0n x)^.
- intros n H1.
apply (ap succ H1 @ (plus_Sn _ _)^).
- intros n H1.
apply (ap pred H1 @ (plus_Pn _ _)^).
Defined.
Lemma plus_assoc x y : forall z : Z, plus (plus x y) z = plus x (plus y z).
Proof.
simple refine (Z_ind _ _ _ _ _ _)
; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros Sz HSz.
refine (ap succ HSz).
- intros Pz HPz.
apply (ap pred HPz).
Defined.
Definition negate : Z -> Z := Z_rec Z zero_Z pred succ inv2 inv1.
Lemma negate_negate : forall x, negate(negate x) = x.
Proof.
simple refine (Z_ind _ _ _ _ _ _) ; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros Sy HSy.
apply (ap succ HSy).
- intros Py HPy.
apply (ap pred HPy).
Defined.
Definition minus x y : Z := plus x (negate y).
Lemma plus_negatex : forall x, plus x (negate x) = zero_Z.
Proof.
simple refine (Z_ind _ _ _ _ _ _) ; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros Sx HSx.
refine (ap pred (plus_Sn _ _) @ _).
refine ((inv1 _)^ @ HSx).
- intros Px HPx.
refine (ap succ (plus_Pn _ _) @ _).
refine ((inv2 _)^ @ HPx).
Defined.
Definition plus_xnegate x : plus (negate x) x = zero_Z :=
plus_comm (negate x) x @ plus_negatex x.
Lemma plus_negate x : forall y, plus (negate x) (negate y) = negate (plus x y).
Proof.
simple refine (Z_ind _ _ _ _ _ _) ; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros Sy HSy.
apply (ap pred HSy).
- intros Py HPy.
apply (ap succ HPy).
Defined.
Definition times (x : Z) : Z -> Z.
Proof.
simple refine (Z_rec _ _ _ _ _ _).
- apply zero_Z.
- apply (plus x).
- apply (fun z => minus z x).
- intros ; unfold minus.
symmetry.
refine (ap (fun z => plus z (negate x)) (plus_comm x m) @ _).
refine (plus_assoc _ _ _ @ _).
refine (ap (fun z => plus m z) (plus_negatex _) @ _).
apply plus_n0.
- intros ; unfold minus.
symmetry.
refine (ap (fun z => plus x z) (plus_comm _ _) @ _).
refine ((plus_assoc _ _ _)^ @ _).
refine (ap (fun z => plus z m) (plus_negatex _) @ _).
apply plus_0n.
Defined.
Lemma times_0n : forall x, times zero_Z x = zero_Z.
Proof.
simple refine (Z_ind _ _ _ _ _ _) ; try (intros ; apply set_path2) ; simpl.
- reflexivity.
- intros Sx HSx.
apply (plus_0n _ @ HSx).
- intros Px HPx.
unfold minus ; simpl ; apply HPx.
Defined.
Definition times_n0 n : times n zero_Z = zero_Z := idpath.
Lemma times_Sn x : forall y, times (succ x) y = plus y (times x y).
Proof.
simple refine (Z_ind _ _ _ _ _ _) ; try (intros ; apply set_path2) ; simpl.
- reflexivity.
- intros Sy HSy.
refine (ap (fun z => plus (succ x) z) HSy @ _).
refine (plus_Sn _ _ @ _).
refine (_ @ (plus_Sn _ _)^).
refine (ap succ _).
refine ((plus_assoc _ _ _)^ @ _).
refine (_ @ plus_assoc _ _ _).
refine (ap (fun z => plus z (times x Sy)) (plus_comm _ _)).
- intros Py HPy ; unfold minus.
refine (ap (fun z => plus z (negate (succ x))) HPy @ _) ; simpl.
refine (_ @ (plus_Pn _ _)^).
refine (ap pred _).
apply plus_assoc.
Defined.
Definition times_nS x y : times x (succ y) = plus x (times x y) := idpath.
Lemma times_Pn x : forall y, times (pred x) y = minus (times x y) y.
Proof.
simple refine (Z_ind _ _ _ _ _ _) ; try (intros ; apply set_path2) ; simpl.
- reflexivity.
- intros Sy HSy.
refine (ap (fun z => plus (pred x) z) HSy @ _) ; unfold minus.
refine (plus_Pn _ _ @ _) ; simpl.
refine (ap pred _).
apply (plus_assoc _ _ _)^.
- intros Py HPy.
refine (ap (fun z => minus z (pred x)) HPy @ _) ; unfold minus ; simpl.
refine (ap succ _).
refine (plus_assoc _ _ _ @ _).
refine (_ @ (plus_assoc _ _ _)^).
refine (ap (fun z => plus (times x Py) z) (plus_comm _ _)).
Defined.
Definition times_nP x y : times x (pred y) = minus (times x y) x := idpath.
Lemma times_comm x : forall y, times x y = times y x.
Proof.
simple refine (Z_ind _ _ _ _ _ _)
; simpl ; try (intros ; apply set_path2).
- apply (times_0n x)^.
- intros Sx HSx.
apply (ap (fun z => plus x z) HSx @ (times_Sn _ _)^).
- intros Py HPy.
apply (ap (fun z => minus z x) HPy @ (times_Pn _ _)^).
Defined.
Lemma times_negatex x : forall y, times x (negate y) = negate (times x y).
Proof.
simple refine (Z_ind _ _ _ _ _ _)
; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros Sy HSy.
unfold minus.
refine (ap (fun z => plus z (negate x)) HSy @ _).
refine (plus_negate _ _ @ _).
apply (ap negate (plus_comm _ _)).
- intros Py HPy.
refine (ap (plus x) HPy @ _).
unfold minus.
refine (ap (fun z => plus z (negate (times x Py))) (negate_negate _)^ @ _).
refine (plus_negate _ _ @ _).
refine (ap negate (plus_comm _ _)).
Defined.
Definition times_xnegate x y : times (negate x) y = negate (times x y) :=
times_comm (negate x) y @ times_negatex y x @ ap negate (times_comm y x).
Lemma dist_times_plus x y : forall z, times x (plus y z) = plus (times x y) (times x z).
Proof.
simple refine (Z_ind _ _ _ _ _ _)
; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros Sz HSz.
refine (ap (plus x) HSz @ _).
refine ((plus_assoc _ _ _)^ @ _).
refine (_ @ plus_assoc _ _ _).
refine (ap (fun z => plus z (times x Sz)) (plus_comm _ _)).
- intros Pz HPz.
refine (ap (fun z => minus z x) HPz @ _).
unfold minus ; simpl.
apply plus_assoc.
Defined.
Lemma dist_plus_times x y z : times (plus x y) z = plus (times x z) (times y z).
Proof.
refine (times_comm _ _ @ _).
refine (dist_times_plus _ _ _ @ _).
refine (ap (plus (times z x)) (times_comm _ _) @ _).
apply (ap (fun a => plus a (times y z)) (times_comm _ _)).
Defined.
Lemma times_assoc x y : forall z, times (times x y) z = times x (times y z).
Proof.
simple refine (Z_ind _ _ _ _ _ _)
; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros Sz HSz.
refine (ap (plus (times x y)) HSz @ _).
symmetry ; apply dist_times_plus.
- intros Pz HPz.
refine (ap (fun z => minus z (times x y)) HPz @ _).
unfold minus.
refine (_ @ (dist_times_plus _ _ _)^).
refine (ap (plus (times x (times y Pz))) _).
apply (times_negatex _ _)^.
Defined.
End ring_Z.
(*
2017-01-02 13:08:36 +01:00
Definition Z_to_S : Z -> S1.
Proof.
2017-08-04 14:46:08 +02:00
refine (Z_rec _ _ _ _ _ _).
2017-01-02 13:08:36 +01:00
Unshelve.
Focus 1.
apply base.
Focus 3.
intro x.
apply x.
Focus 3.
intro x.
apply x.
Focus 1.
intro m.
compute.
reflexivity.
refine (S1_ind _ _ _).
Unshelve.
Focus 2.
apply loop.
2017-01-02 13:15:17 +01:00
rewrite @HoTT.Types.Paths.transport_paths_FlFr.
2017-01-02 13:08:36 +01:00
rewrite ap_idmap.
rewrite concat_Vp.
rewrite concat_1p.
reflexivity.
Defined.
Lemma eq1 : ap Z_to_S (inv1 (pred (succ (pred nul)))) = reflexivity base.
Proof.
2017-08-04 14:46:08 +02:00
rewrite Z_rec_beta_inv1.
reflexivity.
2017-01-02 13:08:36 +01:00
Qed.
Lemma eq2 : ap Z_to_S (ap pred (inv2 (succ (pred nul)))) = loop.
Proof.
2017-08-04 14:46:08 +02:00
rewrite <- ap_compose.
enough (forall (n m : Z) (p : n = m), ap Z_to_S p = ap (fun n : Z => Z_to_S(pred n)) p).
2017-01-02 13:08:36 +01:00
Focus 2.
compute.
reflexivity.
rewrite Z_rec_beta_inv2.
compute.
reflexivity.
Qed.
Module Export AltInts.
2017-08-04 14:46:08 +02:00
Private Inductive Z' : Type0 :=
| positive : nat -> Z'
| negative : nat -> Z'.
Axiom path : positive 0 = negative 0.
Fixpoint Z'_ind
(P : Z' -> Type)
(po : forall (x : nat), P (positive x))
(ne : forall (x : nat), P (negative x))
(i : path # (po 0) = ne 0)
(x : Z')
{struct x}
: P x
:=
(match x return _ -> P x with
| positive n => fun _ => po n
| negative n => fun _ => ne n
end) i.
Axiom Z'_ind_beta_inv1 : forall
(P : Z' -> Type)
(po : forall (x : nat), P (positive x))
(ne : forall (x : nat), P (negative x))
(i : path # (po 0) = ne 0)
, apD (Z'_ind P po ne i) path = i.
2017-01-02 13:08:36 +01:00
End AltInts.
Definition succ_Z' : Z' -> Z'.
Proof.
2017-08-04 14:46:08 +02:00
refine (Z'_ind _ _ _ _).
Unshelve.
Focus 2.
intro n.
apply (positive (S n)).
Focus 2.
intro n.
induction n.
2017-01-02 13:08:36 +01:00
apply (positive 1).
apply (negative n).
2017-08-04 14:46:08 +02:00
simpl.
rewrite transport_const.
reflexivity.
2017-01-02 13:08:36 +01:00
Defined.
Definition pred_Z' : Z' -> Z'.
Proof.
2017-08-04 14:46:08 +02:00
refine (Z'_ind _ _ _ _).
Unshelve.
Focus 2.
intro n.
induction n.
2017-01-02 13:08:36 +01:00
apply (negative 1).
apply (positive n).
2017-08-04 14:46:08 +02:00
Focus 2.
intro n.
apply (negative (S n)).
2017-01-02 13:08:36 +01:00
2017-08-04 14:46:08 +02:00
simpl.
rewrite transport_const.
reflexivity.
2017-01-02 13:08:36 +01:00
Defined.
Fixpoint Nat_to_Pos (n : nat) : Pos :=
match n with
| 0 => Int.one
| S k => succ_pos (Nat_to_Pos k)
end.
Definition Z'_to_Int : Z' -> Int.
Proof.
2017-08-04 14:46:08 +02:00
refine (Z'_ind _ _ _ _).
2017-01-02 13:08:36 +01:00
Unshelve.
Focus 2.
intro x.
induction x.
apply (Int.zero).
apply (succ_int IHx).
Focus 2.
intro x.
induction x.
apply (Int.zero).
apply (pred_int IHx).
simpl.
rewrite transport_const.
reflexivity.
Defined.
Definition Pos_to_Nat : Pos -> nat.
Proof.
2017-08-04 14:46:08 +02:00
intro x.
induction x.
apply 1.
apply (S IHx).
2017-01-02 13:08:36 +01:00
Defined.
Definition Int_to_Z' (x : Int) : Z'.
Proof.
2017-08-04 14:46:08 +02:00
induction x.
apply (negative (Pos_to_Nat p)).
apply (positive 0).
apply (positive (Pos_to_Nat p)).
2017-01-02 13:08:36 +01:00
Defined.
Lemma Z'_to_int_pos_homomorphism :
forall n : nat, Z'_to_Int (positive (S n)) = succ_int (Z'_to_Int (positive n)).
Proof.
2017-08-04 14:46:08 +02:00
intro n.
reflexivity.
2017-01-02 13:08:36 +01:00
Qed.
Lemma Z'_to_int_neg_homomorphism :
forall n : nat, Z'_to_Int (negative (S n)) = pred_int (Z'_to_Int (negative n)).
Proof.
2017-08-04 14:46:08 +02:00
intro n.
reflexivity.
2017-01-02 13:08:36 +01:00
Qed.
Theorem isoEq1 : forall x : Int, Z'_to_Int(Int_to_Z' x) = x.
Proof.
2017-08-04 14:46:08 +02:00
intro x.
induction x.
induction p.
reflexivity.
2017-01-02 13:08:36 +01:00
2017-08-04 14:46:08 +02:00
rewrite Z'_to_int_neg_homomorphism.
rewrite IHp.
reflexivity.
2017-01-02 13:08:36 +01:00
2017-08-04 14:46:08 +02:00
reflexivity.
2017-01-02 13:08:36 +01:00
2017-08-04 14:46:08 +02:00
induction p.
reflexivity.
2017-01-02 13:08:36 +01:00
2017-08-04 14:46:08 +02:00
rewrite Z'_to_int_pos_homomorphism.
rewrite IHp.
reflexivity.
2017-01-02 13:08:36 +01:00
Defined.
Lemma Int_to_Z'_succ_homomorphism :
forall x : Int, Int_to_Z' (succ_int x) = succ_Z' (Int_to_Z' x).
Proof.
2017-08-04 14:46:08 +02:00
simpl.
intro x.
simpl.
induction x.
induction p.
2017-01-02 13:08:36 +01:00
compute.
apply path.
reflexivity.
2017-08-04 14:46:08 +02:00
reflexivity.
2017-01-02 13:08:36 +01:00
2017-08-04 14:46:08 +02:00
induction p.
2017-01-02 13:08:36 +01:00
reflexivity.
reflexivity.
Qed.
Lemma Int_to_Z'_pred_homomorphism :
forall x : Int, Int_to_Z' (pred_int x) = pred_Z' (Int_to_Z' x).
Proof.
2017-08-04 14:46:08 +02:00
intro x.
induction x.
induction p.
2017-01-02 13:08:36 +01:00
reflexivity.
reflexivity.
2017-08-04 14:46:08 +02:00
reflexivity.
2017-01-02 13:08:36 +01:00
2017-08-04 14:46:08 +02:00
induction p.
2017-01-02 13:08:36 +01:00
reflexivity.
reflexivity.
Qed.
Theorem isoEq2 : forall x : Z', Int_to_Z'(Z'_to_Int x) = x.
Proof.
2017-08-04 14:46:08 +02:00
refine (Z'_ind _ _ _ _).
2017-01-02 13:08:36 +01:00
Unshelve.
Focus 2.
intro x.
induction x.
reflexivity.
rewrite Z'_to_int_pos_homomorphism.
rewrite Int_to_Z'_succ_homomorphism.
rewrite IHx.
reflexivity.
Focus 2.
intro x.
induction x.
apply path.
rewrite Z'_to_int_neg_homomorphism.
rewrite Int_to_Z'_pred_homomorphism.
rewrite IHx.
reflexivity.
simpl.
2017-01-02 13:15:17 +01:00
rewrite @HoTT.Types.Paths.transport_paths_FlFr.
2017-01-02 13:08:36 +01:00
rewrite concat_p1.
rewrite ap_idmap.
enough (ap (fun x : Z' => Z'_to_Int x) path = reflexivity Int.zero).
rewrite ap_compose.
rewrite X.
apply concat_1p.
apply axiomK_hset.
apply hset_int.
Defined.
Theorem adj :
forall x : Z', isoEq1 (Z'_to_Int x) = ap Z'_to_Int (isoEq2 x).
Proof.
2017-08-04 14:46:08 +02:00
intro x.
apply hset_int.
2017-01-02 13:08:36 +01:00
Defined.
Definition isomorphism : IsEquiv Z'_to_Int.
Proof.
2017-08-04 14:46:08 +02:00
apply (BuildIsEquiv Z' Int Z'_to_Int Int_to_Z' isoEq1 isoEq2 adj).
Qed.
Axiom everythingSet : forall T : Type, IsHSet T.
Definition Z_to_Z' : Z -> Z'.
Proof.
2017-08-04 14:46:08 +02:00
refine (Z_rec _ _ _ _ _ _).
Unshelve.
Focus 1.
apply (positive 0).
2017-08-04 14:46:08 +02:00
Focus 3.
apply succ_Z'.
2017-08-04 14:46:08 +02:00
Focus 3.
apply pred_Z'.
2017-08-04 14:46:08 +02:00
Focus 1.
refine (Z'_ind _ _ _ _).
Unshelve.
Focus 2.
intros.
reflexivity.
Focus 2.
intros.
induction x.
2017-08-04 14:46:08 +02:00
Focus 1.
compute.
apply path^.
2017-08-04 14:46:08 +02:00
reflexivity.
apply everythingSet.
2017-08-04 14:46:08 +02:00
refine (Z'_ind _ _ _ _).
Unshelve.
Focus 2.
intros.
induction x.
2017-08-04 14:46:08 +02:00
Focus 1.
compute.
apply path.
2017-08-04 14:46:08 +02:00
reflexivity.
Focus 2.
intros.
reflexivity.
apply everythingSet.
Defined.
Definition Z'_to_Z : Z' -> Z.
Proof.
2017-08-04 14:46:08 +02:00
refine (Z'_ind _ _ _ _).
Unshelve.
Focus 2.
induction 1.
apply nul.
apply (succ IHx).
2017-08-04 14:46:08 +02:00
Focus 2.
induction 1.
Focus 1.
apply nul.
apply (pred IHx).
2017-08-04 14:46:08 +02:00
simpl.
rewrite transport_const.
reflexivity.
Defined.
Theorem isoZEq1 : forall n : Z', Z_to_Z'(Z'_to_Z n) = n.
Proof.
2017-08-04 14:46:08 +02:00
refine (Z'_ind _ _ _ _).
Unshelve.
Focus 3.
intros.
induction x.
compute.
apply path.
transitivity (Z_to_Z' (pred (Z'_to_Z (negative x)))).
2017-08-04 14:46:08 +02:00
enough (Z'_to_Z (negative x.+1) = pred (Z'_to_Z (negative x))).
rewrite X.
reflexivity.
2017-08-04 14:46:08 +02:00
reflexivity.
2017-08-04 14:46:08 +02:00
transitivity (pred_Z' (Z_to_Z' (Z'_to_Z (negative x)))).
Focus 1.
reflexivity.
2017-08-04 14:46:08 +02:00
rewrite IHx.
reflexivity.
2017-08-04 14:46:08 +02:00
Focus 2.
intros.
induction x.
Focus 1.
reflexivity.
transitivity (Z_to_Z' (succ (Z'_to_Z (positive x)))).
2017-08-04 14:46:08 +02:00
reflexivity.
2017-08-04 14:46:08 +02:00
transitivity (succ_Z' (Z_to_Z' (Z'_to_Z (positive x)))).
reflexivity.
2017-08-04 14:46:08 +02:00
rewrite IHx.
reflexivity.
2017-08-04 14:46:08 +02:00
apply everythingSet.
Defined.
Theorem isoZEq2 : forall n : Z, Z'_to_Z(Z_to_Z' n) = n.
Proof.
2017-08-04 14:46:08 +02:00
refine (Z_ind _ _ _ _ _ _).
Unshelve.
Focus 1.
reflexivity.
2017-08-04 14:46:08 +02:00
Focus 1.
intros.
apply everythingSet.
2017-08-04 14:46:08 +02:00
Focus 1.
intros.
apply everythingSet.
2017-08-04 14:46:08 +02:00
Focus 1.
intro n.
intro X.
transitivity (Z'_to_Z (succ_Z' (Z_to_Z' n))).
reflexivity.
transitivity (succ (Z'_to_Z (Z_to_Z' n))).
2017-08-04 14:46:08 +02:00
Focus 2.
rewrite X.
reflexivity.
2017-08-04 14:46:08 +02:00
enough (forall m : Z', Z'_to_Z (succ_Z' m) = succ (Z'_to_Z m)).
rewrite X0.
reflexivity.
2017-08-04 14:46:08 +02:00
refine (Z'_ind _ _ _ _).
Unshelve.
Focus 2.
intros.
reflexivity.
2017-08-04 14:46:08 +02:00
Focus 2.
intros.
induction x.
Focus 1.
reflexivity.
2017-08-04 14:46:08 +02:00
compute.
rewrite <- inv2.
reflexivity.
2017-08-04 14:46:08 +02:00
apply everythingSet.
2017-08-04 14:46:08 +02:00
intros.
transitivity (Z'_to_Z (pred_Z' (Z_to_Z' n))).
reflexivity.
transitivity (pred (Z'_to_Z (Z_to_Z' n))).
2017-08-04 14:46:08 +02:00
Focus 2.
rewrite X.
reflexivity.
enough (forall m : Z', Z'_to_Z (pred_Z' m) = pred (Z'_to_Z m)).
rewrite X0.
reflexivity.
refine (Z'_ind _ _ _ _).
Unshelve.
Focus 1.
apply everythingSet.
Focus 1.
intro x.
induction x.
reflexivity.
compute.
rewrite <- inv1.
reflexivity.
intro x.
reflexivity.
Defined.
Theorem adj2 :
forall x : Z', isoZEq2 (Z'_to_Z x) = ap Z'_to_Z (isoZEq1 x).
Proof.
2017-08-04 14:46:08 +02:00
intro x.
apply everythingSet.
Defined.
Definition isomorphism2 : IsEquiv Z'_to_Z.
Proof.
2017-08-04 14:46:08 +02:00
apply (BuildIsEquiv Z' Z Z'_to_Z Z_to_Z' isoZEq2 isoZEq1 adj2).
Qed.
*)