HITs-Examples/FiniteSets/fsets/isomorphism.v

160 lines
5.5 KiB
Coq
Raw Normal View History

2017-08-02 11:40:03 +02:00
(* The representations [FSet A] and [FSetC A] are isomorphic for every A *)
Require Import HoTT HitTactics.
From representations Require Import cons_repr definition.
From fsets Require Import operations_cons_repr properties_cons_repr.
Section Iso.
Context {A : Type}.
Context `{Univalence}.
Definition dupl' (a : A) (X : FSet A) :
{|a|} {|a|} X = {|a|} X := assoc _ _ _ @ ap ( X) (idem _).
Definition comm' (a b : A) (X : FSet A) :
{|a|} {|b|} X = {|b|} {|a|} X :=
assoc _ _ _ @ ap ( X) (comm _ _) @ (assoc _ _ _)^.
2017-08-02 11:40:03 +02:00
Definition FSetC_to_FSet: FSetC A -> FSet A.
Proof.
hrecursion.
- apply E.
2017-08-08 15:29:50 +02:00
- intros a x.
apply ({|a|} x).
- intros. cbn.
apply dupl'.
2017-08-02 11:40:03 +02:00
- intros. cbn.
apply comm'.
2017-08-02 11:40:03 +02:00
Defined.
2017-08-08 15:29:50 +02:00
Definition FSet_to_FSetC: FSet A -> FSetC A.
Proof.
hrecursion.
- apply .
- intro a. apply {|a|}.
- intros X Y. apply (X Y).
- apply append_assoc.
- apply append_comm.
- apply append_nl.
- apply append_nr.
- apply singleton_idem.
Defined.
2017-08-02 11:40:03 +02:00
Lemma append_union: forall (x y: FSetC A),
2017-08-08 15:29:50 +02:00
FSetC_to_FSet (x y) = (FSetC_to_FSet x) (FSetC_to_FSet y).
2017-08-02 11:40:03 +02:00
Proof.
intros x.
2017-08-02 11:40:03 +02:00
hrecursion x; try (intros; apply path_forall; intro; apply set_path2).
- intros. symmetry. apply nl.
- intros a x HR y. unfold union, fsetc_union in *.
refine (_ @ assoc _ _ _).
apply (ap ({|a|} ) (HR _)).
2017-08-02 11:40:03 +02:00
Defined.
Lemma repr_iso_id_l: forall (x: FSet A), FSetC_to_FSet (FSet_to_FSetC x) = x.
Proof.
hinduction; try (intros; apply set_path2).
- reflexivity.
- intro. apply nr.
- intros x y p q.
refine (append_union _ _ @ _).
refine (ap ( _) p @ _).
apply (ap (_ ) q).
2017-08-02 11:40:03 +02:00
Defined.
Lemma repr_iso_id_r: forall (x: FSetC A), FSet_to_FSetC (FSetC_to_FSet x) = x.
Proof.
hinduction; try (intros; apply set_path2).
- reflexivity.
- intros a x HR. rewrite HR. reflexivity.
Defined.
Global Instance: IsEquiv FSet_to_FSetC.
2017-08-02 11:40:03 +02:00
Proof.
apply isequiv_biinv.
unfold BiInv. split.
exists FSetC_to_FSet.
unfold Sect. apply repr_iso_id_l.
exists FSetC_to_FSet.
unfold Sect. apply repr_iso_id_r.
Defined.
Global Instance: IsEquiv FSetC_to_FSet.
Proof.
change (IsEquiv (FSet_to_FSetC)^-1).
apply isequiv_inverse.
Defined.
Theorem repr_iso: FSet A <~> FSetC A.
Proof.
simple refine (@BuildEquiv (FSet A) (FSetC A) FSet_to_FSetC _ ).
Defined.
2017-08-03 14:43:42 +02:00
Theorem fset_fsetc : FSet A = FSetC A.
Proof.
apply (equiv_path _ _)^-1.
exact repr_iso.
Defined.
Theorem FSet_cons_ind (P : FSet A -> Type)
(Pset : forall (X : FSet A), IsHSet (P X))
(Pempt : P )
(Pcons : forall (a : A) (X : FSet A), P X -> P ({|a|} X))
(Pdupl : forall (a : A) (X : FSet A) (px : P X),
transport P (dupl' a X) (Pcons a _ (Pcons a X px)) = Pcons a X px)
(Pcomm : forall (a b : A) (X : FSet A) (px : P X),
transport P (comm' a b X) (Pcons a _ (Pcons b X px)) = Pcons b _ (Pcons a X px)) :
forall X, P X.
Proof.
intros X.
refine (transport P (repr_iso_id_l X) _).
simple refine (FSetC_ind A (fun Z => P (FSetC_to_FSet Z)) _ _ _ _ _ (FSet_to_FSetC X)); simpl.
- apply Pempt.
- intros a Y HY. by apply Pcons.
- intros a Y PY. cbn.
refine (_ @ (Pdupl _ _ _)).
etransitivity.
{ apply (transport_compose _ FSetC_to_FSet (dupl a Y)). }
refine (ap (fun z => transport P z _) _).
apply FSetC_rec_beta_dupl.
- intros a b Y PY. cbn.
refine (_ @ (Pcomm _ _ _ _)).
etransitivity.
{ apply (transport_compose _ FSetC_to_FSet (FSetC.comm a b Y)). }
refine (ap (fun z => transport P z _) _).
apply FSetC_rec_beta_comm.
Defined.
Theorem FSet_cons_ind_beta_empty (P : FSet A -> Type)
(Pset : forall (X : FSet A), IsHSet (P X))
(Pempt : P )
(Pcons : forall (a : A) (X : FSet A), P X -> P ({|a|} X))
(Pdupl : forall (a : A) (X : FSet A) (px : P X),
transport P (dupl' a X) (Pcons a _ (Pcons a X px)) = Pcons a X px)
(Pcomm : forall (a b : A) (X : FSet A) (px : P X),
transport P (comm' a b X) (Pcons a _ (Pcons b X px)) = Pcons b _ (Pcons a X px)) :
FSet_cons_ind P Pset Pempt Pcons Pdupl Pcomm = Pempt.
Proof. by compute. Defined.
(* TODO *)
(* Theorem FSet_cons_ind_beta_cons (P : FSet A -> Type) *)
(* (Pset : forall (X : FSet A), IsHSet (P X)) *)
(* (Pempt : P ∅) *)
(* (Pcons : forall (a : A) (X : FSet A), P X -> P ({|a|} X)) *)
(* (Pdupl : forall (a : A) (X : FSet A) (px : P X), *)
(* transport P (dupl' a X) (Pcons a _ (Pcons a X px)) = Pcons a X px) *)
(* (Pcomm : forall (a b : A) (X : FSet A) (px : P X), *)
(* transport P (comm' a b X) (Pcons a _ (Pcons b X px)) = Pcons b _ (Pcons a X px)) : *)
(* forall a X, FSet_cons_ind P Pset Pempt Pcons Pdupl Pcomm ({|a|} X) = Pcons a X (FSet_cons_ind P Pset Pempt Pcons Pdupl Pcomm X). *)
(* Proof. *)
(* Theorem FSet_cons_ind_beta_dupl (P : FSet A -> Type) *)
(* (Pset : forall (X : FSet A), IsHSet (P X)) *)
(* (Pempt : P ∅) *)
(* (Pcons : forall (a : A) (X : FSet A), P X -> P ({|a|} X)) *)
(* (Pdupl : forall (a : A) (X : FSet A) (px : P X), *)
(* transport P (dupl' a X) (Pcons a _ (Pcons a X px)) = Pcons a X px) *)
(* (Pcomm : forall (a b : A) (X : FSet A) (px : P X), *)
(* transport P (comm' a b X) (Pcons a _ (Pcons b X px)) = Pcons b _ (Pcons a X px)) : *)
(* forall a X, apD (FSet_cons_ind P Pset Pempt Pcons Pdupl Pcomm) (dupl' a X) = Pdupl a X (FSet_cons_ind P Pset Pempt Pcons Pdupl Pcomm X). *)
2017-08-03 14:43:42 +02:00
End Iso.