mirror of https://github.com/nmvdw/HITs-Examples
Merge branch 'bloop'
This commit is contained in:
commit
036d1599b2
|
@ -479,18 +479,18 @@ Defined.
|
|||
|
||||
Lemma eq1 (X Y : FSet A) : X = Y <~> (U Y X = X) * (U X Y = Y).
|
||||
Proof.
|
||||
unshelve eapply BuildEquiv.
|
||||
{ intro H. rewrite H. split; apply union_idem. }
|
||||
unshelve esplit.
|
||||
{ intros [H1 H2]. etransitivity. apply H1^.
|
||||
rewrite comm. apply H2. }
|
||||
intro; apply path_prod; apply set_path2.
|
||||
all: intro; apply set_path2.
|
||||
Defined.
|
||||
|
||||
eapply equiv_iff_hprop_uncurried.
|
||||
split.
|
||||
- intro H. split.
|
||||
apply (comm Y X @ ap (U X) H^ @ union_idem X).
|
||||
apply (ap (U X) H^ @ union_idem X @ H).
|
||||
- intros [H1 H2]. etransitivity. apply H1^.
|
||||
apply (comm Y X @ H2).
|
||||
Defined.
|
||||
|
||||
Lemma subset_union_l `{Funext} X :
|
||||
forall Y, subset X (U X Y) = true.
|
||||
Proof.
|
||||
hinduction X;
|
||||
try (intros; apply path_forall; intro; apply set_path2).
|
||||
- reflexivity.
|
||||
|
@ -511,12 +511,12 @@ Lemma subset_union_equiv `{Funext}
|
|||
: forall X Y : FSet A, subset X Y = true <~> U X Y = Y.
|
||||
Proof.
|
||||
intros X Y.
|
||||
unshelve eapply BuildEquiv.
|
||||
apply subset_union.
|
||||
unshelve esplit.
|
||||
{ intros HXY. rewrite <- HXY. clear HXY.
|
||||
apply subset_union_l. }
|
||||
all: intro; apply set_path2.
|
||||
eapply equiv_iff_hprop_uncurried.
|
||||
split.
|
||||
- apply subset_union.
|
||||
- intros HXY. etransitivity.
|
||||
apply (ap _ HXY^).
|
||||
apply subset_union_l.
|
||||
Defined.
|
||||
|
||||
Lemma eq_subset `{Funext} (X Y : FSet A) :
|
||||
|
@ -528,7 +528,7 @@ Proof.
|
|||
eapply equiv_functor_prod'; apply subset_union_equiv.
|
||||
Defined.
|
||||
|
||||
Lemma subset_isIn `{FE : Funext} (X Y : FSet A) :
|
||||
Lemma subset_isIn `{FE :Funext} (X Y : FSet A) :
|
||||
(forall (a : A), isIn a X = true -> isIn a Y = true)
|
||||
<-> (subset X Y = true).
|
||||
Proof.
|
||||
|
@ -584,24 +584,6 @@ Proof.
|
|||
intros; intro; intros; apply set_path2.
|
||||
Defined.
|
||||
|
||||
Lemma HPropEquiv (X Y : Type) (P : IsHProp X) (Q : IsHProp Y) :
|
||||
(X <-> Y) -> (X <~> Y).
|
||||
Proof.
|
||||
intros [f g].
|
||||
simple refine (BuildEquiv _ _ _ _).
|
||||
apply f.
|
||||
simple refine (BuildIsEquiv _ _ _ _ _ _ _).
|
||||
- apply g.
|
||||
- unfold Sect.
|
||||
intro x.
|
||||
apply Q.
|
||||
- unfold Sect.
|
||||
intro x.
|
||||
apply P.
|
||||
- intros.
|
||||
apply set_path2.
|
||||
Defined.
|
||||
|
||||
Theorem fset_ext `{Funext} (X Y : FSet A) :
|
||||
X = Y <~> (forall (a : A), isIn a X = isIn a Y).
|
||||
Proof.
|
||||
|
@ -609,18 +591,10 @@ Proof.
|
|||
transitivity
|
||||
((forall a, isIn a Y = true -> isIn a X = true)
|
||||
*(forall a, isIn a X = true -> isIn a Y = true)).
|
||||
- eapply equiv_functor_prod'.
|
||||
apply HPropEquiv.
|
||||
exact _.
|
||||
exact _.
|
||||
- eapply equiv_functor_prod';
|
||||
apply equiv_iff_hprop_uncurried;
|
||||
split ; apply subset_isIn.
|
||||
apply HPropEquiv.
|
||||
exact _.
|
||||
exact _.
|
||||
split ; apply subset_isIn.
|
||||
- apply HPropEquiv.
|
||||
exact _.
|
||||
exact _.
|
||||
- apply equiv_iff_hprop_uncurried.
|
||||
split.
|
||||
* intros [H1 H2 a].
|
||||
specialize (H1 a) ; specialize (H2 a).
|
||||
|
|
Loading…
Reference in New Issue