mirror of https://github.com/nmvdw/HITs-Examples
Recursion rule is now defined via induction.
This commit is contained in:
parent
6bb5e8b690
commit
0bdbcdfc6c
|
@ -32,116 +32,8 @@ Axiom idem : forall (x : A),
|
||||||
|
|
||||||
Axiom trunc : IsHSet FSet.
|
Axiom trunc : IsHSet FSet.
|
||||||
|
|
||||||
Fixpoint FSet_rec
|
|
||||||
(P : Type)
|
|
||||||
(H: IsHSet P)
|
|
||||||
(e : P)
|
|
||||||
(l : A -> P)
|
|
||||||
(u : P -> P -> P)
|
|
||||||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
|
||||||
(commP : forall (x y : P), u x y = u y x)
|
|
||||||
(nlP : forall (x : P), u e x = x)
|
|
||||||
(nrP : forall (x : P), u x e = x)
|
|
||||||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
|
||||||
(x : FSet)
|
|
||||||
{struct x}
|
|
||||||
: P
|
|
||||||
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P with
|
|
||||||
| E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => e
|
|
||||||
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => l a
|
|
||||||
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => u
|
|
||||||
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
|
|
||||||
(FSet_rec P H e l u assocP commP nlP nrP idemP z)
|
|
||||||
end) assocP commP nlP nrP idemP H.
|
|
||||||
|
|
||||||
Axiom FSet_rec_beta_assoc : forall
|
|
||||||
(P : Type)
|
|
||||||
(H: IsHSet P)
|
|
||||||
(e : P)
|
|
||||||
(l : A -> P)
|
|
||||||
(u : P -> P -> P)
|
|
||||||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
|
||||||
(commP : forall (x y : P), u x y = u y x)
|
|
||||||
(nlP : forall (x : P), u e x = x)
|
|
||||||
(nrP : forall (x : P), u x e = x)
|
|
||||||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
|
||||||
(x y z : FSet),
|
|
||||||
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (assoc x y z)
|
|
||||||
=
|
|
||||||
(assocP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
|
||||||
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
|
|
||||||
(FSet_rec P H e l u assocP commP nlP nrP idemP z)
|
|
||||||
).
|
|
||||||
|
|
||||||
Axiom FSet_rec_beta_comm : forall
|
|
||||||
(P : Type)
|
|
||||||
(H: IsHSet P)
|
|
||||||
(e : P)
|
|
||||||
(l : A -> P)
|
|
||||||
(u : P -> P -> P)
|
|
||||||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
|
||||||
(commP : forall (x y : P), u x y = u y x)
|
|
||||||
(nlP : forall (x : P), u e x = x)
|
|
||||||
(nrP : forall (x : P), u x e = x)
|
|
||||||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
|
||||||
(x y : FSet),
|
|
||||||
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (comm x y)
|
|
||||||
=
|
|
||||||
(commP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
|
||||||
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
|
|
||||||
).
|
|
||||||
|
|
||||||
Axiom FSet_rec_beta_nl : forall
|
|
||||||
(P : Type)
|
|
||||||
(H: IsHSet P)
|
|
||||||
(e : P)
|
|
||||||
(l : A -> P)
|
|
||||||
(u : P -> P -> P)
|
|
||||||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
|
||||||
(commP : forall (x y : P), u x y = u y x)
|
|
||||||
(nlP : forall (x : P), u e x = x)
|
|
||||||
(nrP : forall (x : P), u x e = x)
|
|
||||||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
|
||||||
(x : FSet),
|
|
||||||
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (nl x)
|
|
||||||
=
|
|
||||||
(nlP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
|
||||||
).
|
|
||||||
|
|
||||||
Axiom FSet_rec_beta_nr : forall
|
|
||||||
(P : Type)
|
|
||||||
(H: IsHSet P)
|
|
||||||
(e : P)
|
|
||||||
(l : A -> P)
|
|
||||||
(u : P -> P -> P)
|
|
||||||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
|
||||||
(commP : forall (x y : P), u x y = u y x)
|
|
||||||
(nlP : forall (x : P), u e x = x)
|
|
||||||
(nrP : forall (x : P), u x e = x)
|
|
||||||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
|
||||||
(x : FSet),
|
|
||||||
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (nr x)
|
|
||||||
=
|
|
||||||
(nrP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
|
||||||
).
|
|
||||||
|
|
||||||
Axiom FSet_rec_beta_idem : forall
|
|
||||||
(P : Type)
|
|
||||||
(H: IsHSet P)
|
|
||||||
(e : P)
|
|
||||||
(l : A -> P)
|
|
||||||
(u : P -> P -> P)
|
|
||||||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
|
||||||
(commP : forall (x y : P), u x y = u y x)
|
|
||||||
(nlP : forall (x : P), u e x = x)
|
|
||||||
(nrP : forall (x : P), u x e = x)
|
|
||||||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
|
||||||
(x : A),
|
|
||||||
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (idem x)
|
|
||||||
=
|
|
||||||
idemP x.
|
|
||||||
|
|
||||||
End FSet.
|
End FSet.
|
||||||
|
|
||||||
Section FSet_induction.
|
Section FSet_induction.
|
||||||
Arguments E {_}.
|
Arguments E {_}.
|
||||||
Arguments U {_} _ _.
|
Arguments U {_} _ _.
|
||||||
|
@ -201,7 +93,95 @@ Axiom FSet_ind_beta_nr : forall (x : FSet A),
|
||||||
apD FSet_ind (nr x) = (nrP x (FSet_ind x)).
|
apD FSet_ind (nr x) = (nrP x (FSet_ind x)).
|
||||||
|
|
||||||
Axiom FSet_ind_beta_idem : forall (x : A), apD FSet_ind (idem x) = idemP x.
|
Axiom FSet_ind_beta_idem : forall (x : A), apD FSet_ind (idem x) = idemP x.
|
||||||
|
|
||||||
|
|
||||||
End FSet_induction.
|
End FSet_induction.
|
||||||
|
|
||||||
|
Section FSet_recursion.
|
||||||
|
|
||||||
|
Variable A : Type.
|
||||||
|
Variable P : Type.
|
||||||
|
Variable H: IsHSet P.
|
||||||
|
Variable e : P.
|
||||||
|
Variable l : A -> P.
|
||||||
|
Variable u : P -> P -> P.
|
||||||
|
Variable assocP : forall (x y z : P), u x (u y z) = u (u x y) z.
|
||||||
|
Variable commP : forall (x y : P), u x y = u y x.
|
||||||
|
Variable nlP : forall (x : P), u e x = x.
|
||||||
|
Variable nrP : forall (x : P), u x e = x.
|
||||||
|
Variable idemP : forall (x : A), u (l x) (l x) = l x.
|
||||||
|
|
||||||
|
Definition FSet_rec : FSet A -> P.
|
||||||
|
Proof.
|
||||||
|
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; simple refine ((transport_const _ _) @ _)) ; cbn.
|
||||||
|
- apply e.
|
||||||
|
- apply l.
|
||||||
|
- intros x y ; apply u.
|
||||||
|
- apply assocP.
|
||||||
|
- apply commP.
|
||||||
|
- apply nlP.
|
||||||
|
- apply nrP.
|
||||||
|
- apply idemP.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Definition FSet_rec_beta_assoc : forall (x y z : FSet A),
|
||||||
|
ap FSet_rec (assoc A x y z)
|
||||||
|
=
|
||||||
|
assocP (FSet_rec x) (FSet_rec y) (FSet_rec z).
|
||||||
|
Proof.
|
||||||
|
intros.
|
||||||
|
unfold FSet_rec.
|
||||||
|
eapply (cancelL (transport_const (assoc A x y z) _)).
|
||||||
|
simple refine ((apD_const _ _)^ @ _).
|
||||||
|
apply FSet_ind_beta_assoc.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Definition FSet_rec_beta_comm : forall (x y : FSet A),
|
||||||
|
ap FSet_rec (comm A x y)
|
||||||
|
=
|
||||||
|
commP (FSet_rec x) (FSet_rec y).
|
||||||
|
Proof.
|
||||||
|
intros.
|
||||||
|
unfold FSet_rec.
|
||||||
|
eapply (cancelL (transport_const (comm A x y) _)).
|
||||||
|
simple refine ((apD_const _ _)^ @ _).
|
||||||
|
apply FSet_ind_beta_comm.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Definition FSet_rec_beta_nl : forall (x : FSet A),
|
||||||
|
ap FSet_rec (nl A x)
|
||||||
|
=
|
||||||
|
nlP (FSet_rec x).
|
||||||
|
Proof.
|
||||||
|
intros.
|
||||||
|
unfold FSet_rec.
|
||||||
|
eapply (cancelL (transport_const (nl A x) _)).
|
||||||
|
simple refine ((apD_const _ _)^ @ _).
|
||||||
|
apply FSet_ind_beta_nl.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Definition FSet_rec_beta_nr : forall (x : FSet A),
|
||||||
|
ap FSet_rec (nr A x)
|
||||||
|
=
|
||||||
|
nrP (FSet_rec x).
|
||||||
|
Proof.
|
||||||
|
intros.
|
||||||
|
unfold FSet_rec.
|
||||||
|
eapply (cancelL (transport_const (nr A x) _)).
|
||||||
|
simple refine ((apD_const _ _)^ @ _).
|
||||||
|
apply FSet_ind_beta_nr.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Definition FSet_rec_beta_idem : forall (a : A),
|
||||||
|
ap FSet_rec (idem A a)
|
||||||
|
=
|
||||||
|
idemP a.
|
||||||
|
Proof.
|
||||||
|
intros.
|
||||||
|
unfold FSet_rec.
|
||||||
|
eapply (cancelL (transport_const (idem A a) _)).
|
||||||
|
simple refine ((apD_const _ _)^ @ _).
|
||||||
|
apply FSet_ind_beta_idem.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
End FSet_recursion.
|
||||||
|
|
||||||
End definition.
|
End definition.
|
Loading…
Reference in New Issue