mirror of
				https://github.com/nmvdw/HITs-Examples
				synced 2025-11-03 15:13:51 +01:00 
			
		
		
		
	Show that Kf (A + B) -> Kf A
This commit is contained in:
		@@ -63,6 +63,28 @@ Section monad_fset.
 | 
			
		||||
      + left. by apply HX0.
 | 
			
		||||
      + right. by apply HX1.
 | 
			
		||||
  Defined.
 | 
			
		||||
 | 
			
		||||
  Lemma bind_isIn `{Univalence} {A : Type} (X : FSet (FSet A)) (a : A) :
 | 
			
		||||
    (exists x, x ∈ X * a ∈ x) -> a ∈ (bind _ X).
 | 
			
		||||
  Proof.
 | 
			
		||||
    hinduction X;
 | 
			
		||||
      try (intros; apply path_forall; intro; apply path_ishprop).
 | 
			
		||||
    - simpl. intros [x [[] ?]].
 | 
			
		||||
    - intros x [y [Hx Hy]].
 | 
			
		||||
      strip_truncations.
 | 
			
		||||
      rewrite <- Hx.
 | 
			
		||||
      apply Hy.
 | 
			
		||||
    - intros x x' IHx IHx'.
 | 
			
		||||
      intros [z [Hz Ha]].
 | 
			
		||||
      strip_truncations.
 | 
			
		||||
      apply tr.
 | 
			
		||||
      destruct Hz as [Hz | Hz]; [ left | right ].
 | 
			
		||||
      + apply IHx.
 | 
			
		||||
        exists z. split; assumption.
 | 
			
		||||
      + apply IHx'.
 | 
			
		||||
        exists z. split; assumption.
 | 
			
		||||
  Defined.
 | 
			
		||||
 | 
			
		||||
End monad_fset.
 | 
			
		||||
 | 
			
		||||
(** Lemmas relating operations to the membership predicate *)
 | 
			
		||||
 
 | 
			
		||||
@@ -1,5 +1,5 @@
 | 
			
		||||
Require Import HoTT HitTactics.
 | 
			
		||||
Require Import sub lattice_interface lattice_examples FSets.
 | 
			
		||||
Require Import sub lattice_interface monad_interface lattice_examples FSets.
 | 
			
		||||
 | 
			
		||||
Section k_finite.
 | 
			
		||||
 | 
			
		||||
@@ -171,6 +171,23 @@ Section k_properties.
 | 
			
		||||
    + apply (HY b).
 | 
			
		||||
  Defined.
 | 
			
		||||
 | 
			
		||||
  Lemma Kf_sum_inv {A B : Type} : Kf (A + B) -> Kf A.
 | 
			
		||||
  Proof.
 | 
			
		||||
    intros HAB. kf_unfold.
 | 
			
		||||
    destruct HAB as [X HX].
 | 
			
		||||
    pose (f := fun z => match (z : A + B) with
 | 
			
		||||
                     | inl a => ({|a|} : FSet A)
 | 
			
		||||
                     | inr b => ∅
 | 
			
		||||
                     end).
 | 
			
		||||
    exists (bind _ (fset_fmap f X)).
 | 
			
		||||
    intro a.
 | 
			
		||||
    apply bind_isIn.
 | 
			
		||||
    specialize (HX (inl a)).
 | 
			
		||||
    exists {|a|}. split; [ | apply tr; reflexivity ].
 | 
			
		||||
    apply (fmap_isIn f (inl a) X).
 | 
			
		||||
    apply HX.
 | 
			
		||||
  Defined.
 | 
			
		||||
 | 
			
		||||
  Lemma Kf_subterm (A : hProp) : Decidable A <~> Kf A.
 | 
			
		||||
  Proof.
 | 
			
		||||
    apply equiv_iff_hprop.
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user