Setup for finite sets library.

This commit is contained in:
Leon Gondelman 2017-05-23 16:30:31 +02:00
parent c024e27338
commit 13737556c6
4 changed files with 546 additions and 0 deletions

5
FiniteSets/_CoqProject Normal file
View File

@ -0,0 +1,5 @@
-R . "" COQC = hoqc COQDEP = hoqdep
definition.v
operations.v
properties.v

207
FiniteSets/definition.v Normal file
View File

@ -0,0 +1,207 @@
Require Import HoTT.
Require Export HoTT.
Module Export definition.
Section FSet.
Variable A : Type.
Private Inductive FSet : Type :=
| E : FSet
| L : A -> FSet
| U : FSet -> FSet -> FSet.
Notation "{| x |}" := (L x).
Infix "" := U (at level 8, right associativity).
Notation "" := E.
Axiom assoc : forall (x y z : FSet ),
x (y z) = (x y) z.
Axiom comm : forall (x y : FSet),
x y = y x.
Axiom nl : forall (x : FSet),
x = x.
Axiom nr : forall (x : FSet),
x = x.
Axiom idem : forall (x : A),
{| x |} {|x|} = {|x|}.
Axiom trunc : IsHSet FSet.
Fixpoint FSet_rec
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x : FSet)
{struct x}
: P
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P with
| E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => e
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => l a
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => u
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
(FSet_rec P H e l u assocP commP nlP nrP idemP z)
end) assocP commP nlP nrP idemP H.
Axiom FSet_rec_beta_assoc : forall
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x y z : FSet),
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (assoc x y z)
=
(assocP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
(FSet_rec P H e l u assocP commP nlP nrP idemP z)
).
Axiom FSet_rec_beta_comm : forall
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x y : FSet),
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (comm x y)
=
(commP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
).
Axiom FSet_rec_beta_nl : forall
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x : FSet),
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (nl x)
=
(nlP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
).
Axiom FSet_rec_beta_nr : forall
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x : FSet),
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (nr x)
=
(nrP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
).
Axiom FSet_rec_beta_idem : forall
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x : A),
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (idem x)
=
idemP x.
End FSet.
Section FSet_induction.
Arguments E {_}.
Arguments U {_} _ _.
Arguments L {_} _.
Arguments assoc {_} _ _ _.
Arguments comm {_} _ _.
Arguments nl {_} _.
Arguments nr {_} _.
Arguments idem {_} _.
Variable A: Type.
Variable (P : FSet A -> Type).
Variable (H : forall a : FSet A, IsHSet (P a)).
Variable (eP : P E).
Variable (lP : forall a: A, P (L a)).
Variable (uP : forall (x y: FSet A), P x -> P y -> P (U x y)).
Variable (assocP : forall (x y z : FSet A)
(px: P x) (py: P y) (pz: P z),
assoc x y z #
(uP x (U y z) px (uP y z py pz))
=
(uP (U x y) z (uP x y px py) pz)).
Variable (commP : forall (x y: FSet A) (px: P x) (py: P y),
comm x y #
uP x y px py = uP y x py px).
Variable (nlP : forall (x : FSet A) (px: P x),
nl x # uP E x eP px = px).
Variable (nrP : forall (x : FSet A) (px: P x),
nr x # uP x E px eP = px).
Variable (idemP : forall (x : A),
idem x # uP (L x) (L x) (lP x) (lP x) = lP x).
(* Induction principle *)
Fixpoint FSet_ind
(x : FSet A)
{struct x}
: P x
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P x with
| E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => eP
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => lP a
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => uP y z
(FSet_ind y)
(FSet_ind z)
end) H assocP commP nlP nrP idemP.
Axiom FSet_ind_beta_assoc : forall (x y z : FSet A),
apD FSet_ind (assoc x y z) =
(assocP x y z (FSet_ind x) (FSet_ind y) (FSet_ind z)).
Axiom FSet_ind_beta_comm : forall (x y : FSet A),
apD FSet_ind (comm x y) = (commP x y (FSet_ind x) (FSet_ind y)).
Axiom FSet_ind_beta_nl : forall (x : FSet A),
apD FSet_ind (nl x) = (nlP x (FSet_ind x)).
Axiom FSet_ind_beta_nr : forall (x : FSet A),
apD FSet_ind (nr x) = (nrP x (FSet_ind x)).
Axiom FSet_ind_beta_idem : forall (x : A), apD FSet_ind (idem x) = idemP x.
End FSet_induction.
End definition.

63
FiniteSets/operations.v Normal file
View File

@ -0,0 +1,63 @@
Require Import HoTT.
Require Export HoTT.
Require Import definition.
(*Set Implicit Arguments.*)
Arguments E {_}.
Arguments U {_} _ _.
Arguments L {_} _.
Arguments assoc {_} _ _ _.
Arguments comm {_} _ _.
Arguments nl {_} _.
Arguments nr {_} _.
Arguments idem {_} _.
Section operations.
Variable A : Type.
Parameter A_eqdec : forall (x y : A), Decidable (x = y).
Definition deceq (x y : A) :=
if dec (x = y) then true else false.
Definition isIn : A -> FSet A -> Bool.
Proof.
intros a.
simple refine (FSet_rec A _ _ _ _ _ _ _ _ _ _).
- exact false.
- intro a'. apply (deceq a a').
- apply orb.
- intros x y z. destruct x; reflexivity.
- intros x y. destruct x, y; reflexivity.
- intros x. reflexivity.
- intros x. destruct x; reflexivity.
- intros a'. destruct (deceq a a'); reflexivity.
Defined.
Infix "" := isIn (at level 9, right associativity).
Definition comprehension :
(A -> Bool) -> FSet A -> FSet A.
Proof.
intros P.
simple refine (FSet_rec A _ _ _ _ _ _ _ _ _ _).
- apply E.
- intro a.
refine (if (P a) then L a else E).
- apply U.
- intros. cbv. apply assoc.
- intros. cbv. apply comm.
- intros. cbv. apply nl.
- intros. cbv. apply nr.
- intros. cbv.
destruct (P x); simpl.
+ apply idem.
+ apply nl.
Defined.
Definition intersection :
FSet A -> FSet A -> FSet A.
Proof.
intros X Y.
apply (comprehension (fun (a : A) => isIn a X) Y).
Defined.
End operations.

271
FiniteSets/properties.v Normal file
View File

@ -0,0 +1,271 @@
Require Import HoTT.
Require Export HoTT.
Require Import definition.
Require Import operations.
Section properties.
Arguments E {_}.
Arguments U {_} _ _.
Arguments L {_} _.
Arguments assoc {_} _ _ _.
Arguments comm {_} _ _.
Arguments nl {_} _.
Arguments nr {_} _.
Arguments idem {_} _.
Arguments isIn {_} _ _.
Arguments comprehension {_} _ _.
Arguments intersection {_} _ _.
Variable A : Type.
Parameter A_eqdec : forall (x y : A), Decidable (x = y).
Definition deceq (x y : A) :=
if dec (x = y) then true else false.
Theorem deceq_sym : forall x y, deceq x y = deceq y x.
Proof.
intros x y.
unfold deceq.
destruct (dec (x = y)) ; destruct (dec (y = x)) ; cbn.
- reflexivity.
- pose (n (p^)) ; contradiction.
- pose (n (p^)) ; contradiction.
- reflexivity.
Defined.
Lemma comprehension_false: forall Y: FSet A,
comprehension (fun a => isIn a E) Y = E.
Proof.
simple refine (FSet_ind _ _ _ _ _ _ _ _ _ _ _);
try (intros; apply set_path2).
- cbn. reflexivity.
- cbn. reflexivity.
- intros x y IHa IHb.
cbn.
rewrite IHa.
rewrite IHb.
rewrite nl.
reflexivity.
Defined.
Lemma isIn_singleton_eq (a b: A) : isIn a (L b) = true -> a = b.
Proof. unfold isIn. simpl. unfold operations.deceq.
destruct (dec (a = b)). intro. apply p.
intro X.
contradiction (false_ne_true X).
Defined.
Lemma isIn_empty_false (a: A) : isIn a E = true -> Empty.
Proof.
cbv. intro X.
contradiction (false_ne_true X).
Defined.
Lemma isIn_union (a: A) (X Y: FSet A) :
isIn a (U X Y) = (isIn a X || isIn a Y)%Bool.
Proof. reflexivity. Qed.
Theorem comprehension_or : forall ϕ ψ (x: FSet A),
comprehension (fun a => orb (ϕ a) (ψ a)) x = U (comprehension ϕ x)
(comprehension ψ x).
Proof.
intros ϕ ψ.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
- cbn. symmetry ; apply nl.
- cbn. intros.
destruct (ϕ a) ; destruct (ψ a) ; symmetry.
* apply idem.
* apply nr.
* apply nl.
* apply nl.
- simpl. intros x y P Q.
cbn.
rewrite P.
rewrite Q.
rewrite <- assoc.
rewrite (assoc (comprehension ψ x)).
rewrite (comm (comprehension ψ x) (comprehension ϕ y)).
rewrite <- assoc.
rewrite <- assoc.
reflexivity.
Defined.
Theorem intersection_isIn : forall a (x y: FSet A),
isIn a (intersection x y) = andb (isIn a x) (isIn a y).
Proof.
Admitted.
(*
intros a.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; cbn.
- intros y.
rewrite intersection_E.
reflexivity.
- intros b y.
rewrite intersection_La.
unfold deceq.
destruct (dec (a = b)) ; cbn.
* rewrite p.
destruct (isIn b y).
+ cbn.
unfold deceq.
destruct (dec (b = b)).
{ reflexivity. }
{ pose (n idpath). contradiction. }
+ reflexivity.
* destruct (isIn b y).
+ cbn.
unfold deceq.
destruct (dec (a = b)).
{ pose (n p). contradiction. }
{ reflexivity. }
+ reflexivity.
- intros x y P Q z.
enough (intersection (U x y) z = U (intersection x z) (intersection y z)).
rewrite X.
cbn.
rewrite P.
rewrite Q.
destruct (isIn a x) ; destruct (isIn a y) ; destruct (isIn a z) ; reflexivity.
admit.
Admitted.
*)
Theorem union_idem : forall x: FSet A, U x x = x.
Proof.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ;
try (intros ; apply set_path2) ; cbn.
- apply nl.
- apply idem.
- intros x y P Q.
rewrite assoc.
rewrite (comm x y).
rewrite <- (assoc y x x).
rewrite P.
rewrite (comm y x).
rewrite <- (assoc x y y).
rewrite Q.
reflexivity.
Defined.
Lemma intersection_0l: forall X: FSet A, intersection E X = E.
Proof.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ;
try (intros ; apply set_path2).
- reflexivity.
- intro a.
reflexivity.
- unfold intersection.
intros x y P Q.
cbn.
rewrite P.
rewrite Q.
apply nl.
Defined.
Definition intersection_0r (X: FSet A): intersection X E = E := idpath.
Lemma intersection_comm (X Y: FSet A): intersection X Y = intersection Y X.
Proof.
(*
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _ X) ;
try (intros; apply set_path2).
- cbn. unfold intersection. apply comprehension_false.
- cbn. unfold intersection. intros a.
hrecursion Y; try (intros; apply set_path2).
+ cbn. reflexivity.
+ cbn. intros.
destruct (dec (a0 = a)).
rewrite p. destruct (dec (a=a)).
reflexivity.
contradiction n.
reflexivity.
destruct (dec (a = a0)).
contradiction n. apply p^. reflexivity.
+ cbn -[isIn]. intros Y1 Y2 IH1 IH2.
rewrite IH1.
rewrite IH2.
apply (comprehension_union (L a)).
- intros X1 X2 IH1 IH2.
cbn.
unfold intersection in *.
rewrite <- IH1.
rewrite <- IH2. symmetry.
apply comprehension_union.
Defined.*)
Admitted.
Lemma comprehension_union (X Y Z: FSet A) :
U (comprehension (fun a => isIn a Y) X)
(comprehension (fun a => isIn a Z) X) =
comprehension (fun a => isIn a (U Y Z)) X.
Proof.
Admitted.
(*
hrecursion X; try (intros; apply set_path2).
- cbn. apply nl.
- cbn. intro a.
destruct (isIn a Y); simpl;
destruct (isIn a Z); simpl.
apply idem.
apply nr.
apply nl.
apply nl.
- cbn. intros X1 X2 IH1 IH2.
rewrite assoc.
rewrite (comm _ (comprehension (fun a : A => isIn a Y) X1)
(comprehension (fun a : A => isIn a Y) X2)).
rewrite <- (assoc _
(comprehension (fun a : A => isIn a Y) X2)
(comprehension (fun a : A => isIn a Y) X1)
(comprehension (fun a : A => isIn a Z) X1)
).
rewrite IH1.
rewrite comm.
rewrite assoc.
rewrite (comm _ (comprehension (fun a : A => isIn a Z) X2) _).
rewrite IH2.
apply comm.
Defined.*)
Theorem intersection_assoc : forall (x y z: FSet A),
intersection x (intersection y z) = intersection (intersection x y) z.
Admitted.
(*
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
- intros y z.
cbn.
rewrite intersection_E.
rewrite intersection_E.
rewrite intersection_E.
reflexivity.
- intros a y z.
cbn.
rewrite intersection_La.
rewrite intersection_La.
rewrite intersection_isIn.
destruct (isIn a y).
* rewrite intersection_La.
destruct (isIn a z).
+ reflexivity.
+ reflexivity.
* rewrite intersection_E.
reflexivity.
- unfold intersection. cbn.
intros x y P Q z z'.
rewrite comprehension_or.
rewrite P.
rewrite Q.
rewrite comprehension_or.
cbn.
rewrite comprehension_or.
reflexivity.
*)
End properties.