mirror of https://github.com/nmvdw/HITs-Examples
Shortenings in b_finite
This commit is contained in:
parent
c7df8ae8aa
commit
16e0e6f63d
|
@ -15,7 +15,7 @@ Section finite_hott.
|
|||
exists (a; tr idpath).
|
||||
intros [b p].
|
||||
simple refine (Trunc_ind (fun p => (a; tr 1%path) = (b; p)) _ p).
|
||||
clear p; intro p. simpl.
|
||||
clear p; intro p ; simpl.
|
||||
apply path_sigma_hprop; simpl.
|
||||
apply p^.
|
||||
Defined.
|
||||
|
@ -32,7 +32,7 @@ Section finite_hott.
|
|||
Proof.
|
||||
intros a.
|
||||
simple refine (Build_Finite _ 1 _).
|
||||
apply tr.
|
||||
apply tr.
|
||||
symmetry.
|
||||
refine (BuildEquiv _ _ (singleton_fin_equiv' a) _).
|
||||
Defined.
|
||||
|
@ -47,8 +47,7 @@ Section finite_hott.
|
|||
|
||||
Definition decidable_empty_finite : hasDecidableEmpty Bfin.
|
||||
Proof.
|
||||
intros X Y.
|
||||
destruct Y as [n f].
|
||||
intros X [n f].
|
||||
strip_truncations.
|
||||
destruct n.
|
||||
- refine (tr(inl _)).
|
||||
|
@ -62,83 +61,66 @@ Section finite_hott.
|
|||
Defined.
|
||||
|
||||
Lemma no_union `{IsHSet A}
|
||||
(f : forall (X Y : Sub A),
|
||||
(U : forall (X Y : Sub A),
|
||||
Bfin X -> Bfin Y -> Bfin (X ∪ Y))
|
||||
: DecidablePaths A.
|
||||
Proof.
|
||||
intros a b.
|
||||
specialize (f {|a|} {|b|} (singleton a) (singleton b)).
|
||||
unfold Bfin in f.
|
||||
destruct f as [n pn].
|
||||
destruct (U {|a|} {|b|} (singleton a) (singleton b)) as [n pn].
|
||||
strip_truncations.
|
||||
destruct pn as [f [g fg gf _]].
|
||||
destruct n as [|n].
|
||||
unfold Sect in *.
|
||||
destruct pn as [f [g fg gf _]], n as [ | [ | n]].
|
||||
- contradiction f.
|
||||
exists a. apply (tr(inl(tr idpath))).
|
||||
- destruct n as [|n].
|
||||
+ (* If the size of the union is 1, then (a = b) *)
|
||||
refine (inl _).
|
||||
pose (s1 := (a;tr(inl(tr idpath)))
|
||||
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
|
||||
pose (s2 := (b;tr(inr(tr idpath)))
|
||||
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
|
||||
refine (ap (fun x => x.1) (gf s1)^ @ _ @ (ap (fun x => x.1) (gf s2))).
|
||||
assert (fs_eq : f s1 = f s2).
|
||||
{ by apply path_ishprop. }
|
||||
refine (ap (fun x => (g x).1) fs_eq).
|
||||
+ (* Otherwise, ¬(a = b) *)
|
||||
refine (inr (fun p => _)).
|
||||
pose (s1 := inl (inr tt) : Fin n + Unit + Unit).
|
||||
pose (s2 := inr tt : Fin n + Unit + Unit).
|
||||
pose (gs1 := g s1).
|
||||
pose (c := g s1).
|
||||
pose (gs2 := g s2).
|
||||
pose (d := g s2).
|
||||
assert (Hgs1 : gs1 = c) by reflexivity.
|
||||
assert (Hgs2 : gs2 = d) by reflexivity.
|
||||
destruct c as [x px'].
|
||||
destruct d as [y py'].
|
||||
simple refine (Trunc_ind _ _ px') ; intros px
|
||||
; simple refine (Trunc_ind _ _ py') ; intros py ; simpl.
|
||||
cut (x = y).
|
||||
{
|
||||
enough (s1 = s2) as X.
|
||||
{
|
||||
unfold s1, s2 in X.
|
||||
contradiction (inl_ne_inr _ _ X).
|
||||
}
|
||||
unfold gs1, gs2 in *.
|
||||
refine ((fg s1)^ @ _ @ fg s2).
|
||||
rewrite Hgs1, Hgs2.
|
||||
f_ap.
|
||||
simple refine (path_sigma _ _ _ _ _); [ | apply path_ishprop ]; simpl.
|
||||
destruct px as [px | px] ; destruct py as [py | py]
|
||||
; refine (Trunc_rec _ px) ; clear px ; intro px
|
||||
; refine (Trunc_rec _ py) ; clear py ; intro py.
|
||||
* apply (px @ py^).
|
||||
* refine (px @ _ @ py^). auto.
|
||||
* refine (px @ _^ @ py^). auto.
|
||||
* apply (px @ py^).
|
||||
}
|
||||
destruct px as [px | px] ; destruct py as [py | py]
|
||||
; refine (Trunc_rec _ px) ; clear px ; intro px
|
||||
; refine (Trunc_rec _ py) ; clear py ; intro py.
|
||||
** apply (px @ py^).
|
||||
** refine (px @ _ @ py^). auto.
|
||||
** refine (px @ _^ @ py^). auto.
|
||||
** apply (px @ py^).
|
||||
Defined.
|
||||
exists a.
|
||||
apply (tr(inl(tr idpath))).
|
||||
- refine (inl _).
|
||||
pose (s1 := (a;tr(inl(tr idpath)))
|
||||
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
|
||||
pose (s2 := (b;tr(inr(tr idpath)))
|
||||
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
|
||||
refine (ap (fun x => x.1) (gf s1)^ @ _ @ (ap (fun x => x.1) (gf s2))).
|
||||
assert (fs_eq : f s1 = f s2).
|
||||
{ by apply path_ishprop. }
|
||||
refine (ap (fun x => (g x).1) fs_eq).
|
||||
- (* Otherwise, ¬(a = b) *)
|
||||
refine (inr (fun p => _)).
|
||||
pose (s1 := inl (inr tt) : Fin n + Unit + Unit).
|
||||
pose (s2 := inr tt : Fin n + Unit + Unit).
|
||||
pose (gs1 := g s1).
|
||||
pose (c := gs1).
|
||||
pose (gs2 := g s2).
|
||||
pose (d := gs2).
|
||||
assert (Hgs1 : gs1 = c) by reflexivity.
|
||||
assert (Hgs2 : gs2 = d) by reflexivity.
|
||||
destruct c as [x px'], d as [y py'].
|
||||
simple refine (Trunc_ind _ _ px') ; intros px
|
||||
; simple refine (Trunc_ind _ _ py') ; intros py ; simpl.
|
||||
enough (s1 = s2) as X.
|
||||
{
|
||||
unfold s1, s2 in X.
|
||||
contradiction (inl_ne_inr _ _ X).
|
||||
}
|
||||
refine ((fg s1)^ @ ap f (Hgs1 @ _ @ Hgs2^) @ fg s2).
|
||||
simple refine (path_sigma _ _ _ _ _); [ | apply path_ishprop ]; simpl.
|
||||
destruct px as [px | px] ; destruct py as [py | py]
|
||||
; refine (Trunc_rec _ px) ; clear px ; intro px
|
||||
; refine (Trunc_rec _ py) ; clear py ; intro py.
|
||||
* apply (px @ py^).
|
||||
* refine (px @ p @ py^).
|
||||
* refine (px @ p^ @ py^).
|
||||
* apply (px @ py^).
|
||||
Defined.
|
||||
End finite_hott.
|
||||
|
||||
Section singleton_set.
|
||||
Variable (A : Type).
|
||||
Context `{Univalence}.
|
||||
|
||||
Variable (HA : forall a, {b : A & b ∈ {|a|}} <~> Fin 1).
|
||||
|
||||
Definition el x : {b : A & b ∈ {|x|}} := (x;tr idpath).
|
||||
|
||||
Theorem single_bfin_set (HA : forall a, {b : A & b ∈ {|a|}} <~> Fin 1)
|
||||
: forall (x : A) (p : x = x), p = idpath.
|
||||
Theorem single_bfin_set : forall (x : A) (p : x = x), p = idpath.
|
||||
Proof.
|
||||
intros x p.
|
||||
specialize (HA x).
|
||||
|
@ -172,6 +154,13 @@ Section singleton_set.
|
|||
}
|
||||
apply path_ishprop.
|
||||
Defined.
|
||||
|
||||
Global Instance set_singleton : IsHSet A.
|
||||
Proof.
|
||||
refine hset_axiomK.
|
||||
unfold axiomK.
|
||||
apply single_bfin_set.
|
||||
Defined.
|
||||
End singleton_set.
|
||||
|
||||
Section empty.
|
||||
|
@ -179,6 +168,7 @@ Section empty.
|
|||
Variable (X : A -> hProp)
|
||||
(Xequiv : {a : A & a ∈ X} <~> Fin 0).
|
||||
Context `{Univalence}.
|
||||
|
||||
Lemma X_empty : X = ∅.
|
||||
Proof.
|
||||
apply path_forall.
|
||||
|
@ -217,8 +207,7 @@ Section split.
|
|||
apply path_sigma_hprop. apply p.
|
||||
- rewrite transport_paths_FlFr.
|
||||
hott_simpl; cbn.
|
||||
rewrite ap_compose.
|
||||
rewrite (ap_compose inl f^-1).
|
||||
rewrite ap_compose, (ap_compose inl f^-1).
|
||||
rewrite ap_inl_path_sum_inl.
|
||||
repeat (rewrite transport_paths_FlFr; hott_simpl).
|
||||
rewrite !ap_pp.
|
||||
|
@ -233,7 +222,8 @@ Section split.
|
|||
rewrite concat_Vp.
|
||||
rewrite (concat_p_pp (ap pr1 (eissect f (f^-1 (inl x))))^).
|
||||
rewrite concat_Vp.
|
||||
hott_simpl. }
|
||||
hott_simpl.
|
||||
}
|
||||
exists (fun a => BuildhProp (P' a)).
|
||||
exists (f^-1 (inr tt)).1.
|
||||
split.
|
||||
|
@ -245,8 +235,9 @@ Section split.
|
|||
- intros [a [y p]]; cbn.
|
||||
eapply path_sigma with p^.
|
||||
apply path_ishprop.
|
||||
- intros x; cbn.
|
||||
reflexivity. }
|
||||
- intros x.
|
||||
reflexivity.
|
||||
}
|
||||
{ intros a.
|
||||
unfold P'.
|
||||
apply path_iff_hprop.
|
||||
|
@ -279,9 +270,8 @@ Section Bfin_no_singletons.
|
|||
Definition S1toSig (x : S1) : {x : S1 & merely(x = base)}.
|
||||
Proof.
|
||||
exists x.
|
||||
simple refine (S1_ind (fun z => merely(z = base)) _ _ x) ; simpl.
|
||||
- apply (tr idpath).
|
||||
- apply path_ishprop.
|
||||
simple refine (S1_ind (fun z => merely(z = base)) (tr idpath) _ x).
|
||||
apply path_ishprop.
|
||||
Defined.
|
||||
|
||||
Instance S1toSig_equiv : IsEquiv S1toSig.
|
||||
|
@ -289,10 +279,9 @@ Section Bfin_no_singletons.
|
|||
apply isequiv_biinv.
|
||||
split.
|
||||
- exists (fun x => x.1).
|
||||
simple refine (S1_ind _ _ _) ; simpl.
|
||||
* reflexivity.
|
||||
* rewrite transport_paths_FlFr.
|
||||
hott_simpl.
|
||||
simple refine (S1_ind _ idpath _) ; simpl.
|
||||
rewrite transport_paths_FlFr.
|
||||
hott_simpl.
|
||||
- exists (fun x => x.1).
|
||||
intros [z x].
|
||||
simple refine (path_sigma _ _ _ _ _) ; simpl.
|
||||
|
@ -322,7 +311,8 @@ End Bfin_no_singletons.
|
|||
(* If A has decidable equality, then every Bfin subobject has decidable membership *)
|
||||
Section dec_membership.
|
||||
Variable (A : Type).
|
||||
Context `{DecidablePaths A} `{Univalence}.
|
||||
Context `{MerelyDecidablePaths A} `{Univalence}.
|
||||
|
||||
Global Instance DecidableMembership (P : Sub A) (Hfin : Bfin P) (a : A) :
|
||||
Decidable (a ∈ P).
|
||||
Proof.
|
||||
|
@ -341,20 +331,23 @@ Section dec_membership.
|
|||
unfold member, sub_membership.
|
||||
rewrite (HP a).
|
||||
destruct (IHn P' HP') as [IH | IH].
|
||||
+ left. apply (tr (inl IH)).
|
||||
+ destruct (dec (a = b)) as [Hab | Hab].
|
||||
left. apply (tr (inr (tr Hab))).
|
||||
right. intros α. strip_truncations.
|
||||
destruct α as [? | ?]; [ | strip_truncations]; contradiction.
|
||||
* apply (inl (tr (inl IH))).
|
||||
* destruct (m_dec_path a b) as [Hab | Hab].
|
||||
+ apply (inl (tr (inr Hab))).
|
||||
+ refine (inr(fun a => _)).
|
||||
strip_truncations.
|
||||
destruct a as [? | t] ; [ | strip_truncations] ; try contradiction.
|
||||
contradiction (Hab (tr t)).
|
||||
Defined.
|
||||
End dec_membership.
|
||||
|
||||
Section bfin_kfin.
|
||||
Context `{Univalence}.
|
||||
|
||||
Lemma bfin_to_kfin : forall (B : Type), Finite B -> Kf B.
|
||||
Proof.
|
||||
apply finite_ind_hprop.
|
||||
- intros. apply _.
|
||||
- apply _.
|
||||
- apply Kf_unfold.
|
||||
exists ∅. intros [].
|
||||
- intros B [n f] IH.
|
||||
|
@ -393,56 +386,43 @@ Section kfin_bfin.
|
|||
Proof.
|
||||
intros HYb.
|
||||
unshelve eapply BuildEquiv.
|
||||
{ intros [a Ha]. cbn in Ha.
|
||||
- intros [a Ha]. cbn in Ha.
|
||||
destruct (dec (BuildhProp (a = b))) as [Hab | Hab].
|
||||
- right. apply tt.
|
||||
- left. exists a.
|
||||
+ apply (inr tt).
|
||||
+ refine (inl(a;_)).
|
||||
strip_truncations.
|
||||
destruct Ha as [HXa | HYa].
|
||||
+ refine (Empty_rec _).
|
||||
* refine (Empty_rec _).
|
||||
strip_truncations.
|
||||
by apply Hab.
|
||||
+ apply HYa. }
|
||||
{ apply isequiv_biinv.
|
||||
unshelve esplit; cbn.
|
||||
- unshelve eexists.
|
||||
+ intros [[a Ha] | []].
|
||||
* exists a.
|
||||
apply tr.
|
||||
right. apply Ha.
|
||||
* exists b.
|
||||
apply (tr (inl (tr idpath))).
|
||||
+ intros [a Ha]; cbn.
|
||||
strip_truncations.
|
||||
simple refine (path_sigma' _ _ _); [ | apply path_ishprop ].
|
||||
destruct (H a b); cbn.
|
||||
* apply p^.
|
||||
* reflexivity.
|
||||
- unshelve eexists. (* TODO ACHTUNG CODE DUPLICATION *)
|
||||
+ intros [[a Ha] | []].
|
||||
* exists a.
|
||||
apply tr.
|
||||
right. apply Ha.
|
||||
* exists b.
|
||||
apply (tr (inl (tr idpath))).
|
||||
+ intros [[a Ha] | []]; cbn.
|
||||
destruct (dec (_ = b)) as [Hb | Hb]; cbn.
|
||||
{ refine (Empty_rec _).
|
||||
rewrite Hb in Ha.
|
||||
contradiction. }
|
||||
{ reflexivity. }
|
||||
destruct (dec (b = b)); [ reflexivity | contradiction ]. }
|
||||
* apply HYa.
|
||||
- apply isequiv_biinv.
|
||||
unshelve esplit ; (unshelve eexists
|
||||
; [intros [[a Ha] | []]
|
||||
; [apply (a;(tr(inr Ha))) | apply (b;(tr(inl (tr idpath))))]
|
||||
| ]).
|
||||
+ intros [a Ha]; cbn.
|
||||
strip_truncations.
|
||||
simple refine (path_sigma' _ _ _); [ | apply path_ishprop ].
|
||||
destruct (H a b); cbn.
|
||||
* apply p^.
|
||||
* reflexivity.
|
||||
+ intros [[a Ha] | []]; cbn.
|
||||
destruct (dec (a = b)) as [Hb | Hb]; cbn.
|
||||
* refine (Empty_rec _).
|
||||
rewrite Hb in Ha.
|
||||
contradiction.
|
||||
* reflexivity.
|
||||
* destruct (dec (b = b)); [ reflexivity | contradiction ].
|
||||
Defined.
|
||||
|
||||
Theorem bfin_union : @closedUnion A Bfin.
|
||||
Proof.
|
||||
intros X Y HX HY.
|
||||
destruct HX as [n fX].
|
||||
intros X Y [n fX] HY.
|
||||
strip_truncations.
|
||||
revert fX. revert X.
|
||||
induction n; intros X fX.
|
||||
- rewrite (X_empty _ X fX).
|
||||
rewrite (neutralL_max (Sub A)).
|
||||
- rewrite (X_empty _ X fX), (neutralL_max (Sub A)).
|
||||
apply HY.
|
||||
- destruct (split X n fX) as
|
||||
(X' & b & HX' & HX).
|
||||
|
@ -469,48 +449,45 @@ Section kfin_bfin.
|
|||
exists (n'.+1).
|
||||
apply tr.
|
||||
transitivity ({a : A & a ∈ (fun a => merely (a = b)) ∪ (X' ∪ Y)}).
|
||||
{ apply equiv_functor_sigma_id.
|
||||
* apply equiv_functor_sigma_id.
|
||||
intro a.
|
||||
rewrite <- (associative_max (Sub A)).
|
||||
assert (X = X' ∪ (fun a => merely (a = b))) as HX_.
|
||||
{ apply path_forall. intros ?.
|
||||
unfold union, sub_union, max_fun.
|
||||
apply HX. }
|
||||
rewrite HX_.
|
||||
rewrite <- (commutative_max (Sub A) X').
|
||||
reflexivity. }
|
||||
cbn[Fin].
|
||||
etransitivity. apply (notIn_ext_union_singleton b _ HX'Yb).
|
||||
by rewrite ((equiv_path _ _)^-1 fw).
|
||||
** apply path_forall. intros ?.
|
||||
unfold union, sub_union, max_fun.
|
||||
apply HX.
|
||||
** rewrite HX_, <- (commutative_max (Sub A) X').
|
||||
reflexivity.
|
||||
* etransitivity.
|
||||
{ apply (notIn_ext_union_singleton b _ HX'Yb). }
|
||||
by rewrite ((equiv_path _ _)^-1 fw).
|
||||
Defined.
|
||||
|
||||
Definition FSet_to_Bfin : forall (X : FSet A), Bfin (map X).
|
||||
Proof.
|
||||
hinduction; try (intros; apply path_ishprop).
|
||||
- exists 0. apply tr. simpl.
|
||||
- exists 0.
|
||||
apply tr.
|
||||
simple refine (BuildEquiv _ _ _ _).
|
||||
destruct 1 as [? []].
|
||||
- intros a.
|
||||
apply _.
|
||||
- intros Y1 Y2 HY1 HY2.
|
||||
apply bfin_union; auto.
|
||||
- apply _.
|
||||
- intros.
|
||||
apply bfin_union ; assumption.
|
||||
Defined.
|
||||
End kfin_bfin.
|
||||
|
||||
Instance Kf_to_Bf (X : Type) `{Univalence} `{DecidablePaths X} (Hfin : Kf X) : Finite X.
|
||||
Global Instance Kf_to_Bf (X : Type) `{Univalence} `{DecidablePaths X} (Hfin : Kf X) : Finite X.
|
||||
Proof.
|
||||
apply Kf_unfold in Hfin.
|
||||
destruct Hfin as [Y HY].
|
||||
pose (X' := FSet_to_Bfin _ Y).
|
||||
unfold Bfin in X'.
|
||||
simple refine (finite_equiv' _ _ X').
|
||||
destruct (Kf_unfold _ Hfin) as [Y HY].
|
||||
simple refine (finite_equiv' _ _ (FSet_to_Bfin _ Y)).
|
||||
unshelve esplit.
|
||||
- intros [a ?]. apply a.
|
||||
- apply isequiv_biinv. split.
|
||||
- apply (fun z => z.1).
|
||||
- apply isequiv_biinv.
|
||||
split.
|
||||
* exists (fun a => (a;HY a)).
|
||||
intros [b Hb].
|
||||
apply path_sigma' with idpath.
|
||||
apply path_ishprop.
|
||||
* exists (fun a => (a;HY a)).
|
||||
intros b. reflexivity.
|
||||
* refine (fun a => (a;HY a);fun _ => _).
|
||||
reflexivity.
|
||||
Defined.
|
Loading…
Reference in New Issue