Shortenings in b_finite

This commit is contained in:
Niels van der Weide 2017-10-04 23:00:14 +02:00
parent c7df8ae8aa
commit 16e0e6f63d
1 changed files with 125 additions and 148 deletions

View File

@ -15,7 +15,7 @@ Section finite_hott.
exists (a; tr idpath).
intros [b p].
simple refine (Trunc_ind (fun p => (a; tr 1%path) = (b; p)) _ p).
clear p; intro p. simpl.
clear p; intro p ; simpl.
apply path_sigma_hprop; simpl.
apply p^.
Defined.
@ -32,7 +32,7 @@ Section finite_hott.
Proof.
intros a.
simple refine (Build_Finite _ 1 _).
apply tr.
apply tr.
symmetry.
refine (BuildEquiv _ _ (singleton_fin_equiv' a) _).
Defined.
@ -47,8 +47,7 @@ Section finite_hott.
Definition decidable_empty_finite : hasDecidableEmpty Bfin.
Proof.
intros X Y.
destruct Y as [n f].
intros X [n f].
strip_truncations.
destruct n.
- refine (tr(inl _)).
@ -62,83 +61,66 @@ Section finite_hott.
Defined.
Lemma no_union `{IsHSet A}
(f : forall (X Y : Sub A),
(U : forall (X Y : Sub A),
Bfin X -> Bfin Y -> Bfin (X Y))
: DecidablePaths A.
Proof.
intros a b.
specialize (f {|a|} {|b|} (singleton a) (singleton b)).
unfold Bfin in f.
destruct f as [n pn].
destruct (U {|a|} {|b|} (singleton a) (singleton b)) as [n pn].
strip_truncations.
destruct pn as [f [g fg gf _]].
destruct n as [|n].
unfold Sect in *.
destruct pn as [f [g fg gf _]], n as [ | [ | n]].
- contradiction f.
exists a. apply (tr(inl(tr idpath))).
- destruct n as [|n].
+ (* If the size of the union is 1, then (a = b) *)
refine (inl _).
pose (s1 := (a;tr(inl(tr idpath)))
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
pose (s2 := (b;tr(inr(tr idpath)))
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
refine (ap (fun x => x.1) (gf s1)^ @ _ @ (ap (fun x => x.1) (gf s2))).
assert (fs_eq : f s1 = f s2).
{ by apply path_ishprop. }
refine (ap (fun x => (g x).1) fs_eq).
+ (* Otherwise, ¬(a = b) *)
refine (inr (fun p => _)).
pose (s1 := inl (inr tt) : Fin n + Unit + Unit).
pose (s2 := inr tt : Fin n + Unit + Unit).
pose (gs1 := g s1).
pose (c := g s1).
pose (gs2 := g s2).
pose (d := g s2).
assert (Hgs1 : gs1 = c) by reflexivity.
assert (Hgs2 : gs2 = d) by reflexivity.
destruct c as [x px'].
destruct d as [y py'].
simple refine (Trunc_ind _ _ px') ; intros px
; simple refine (Trunc_ind _ _ py') ; intros py ; simpl.
cut (x = y).
{
enough (s1 = s2) as X.
{
unfold s1, s2 in X.
contradiction (inl_ne_inr _ _ X).
}
unfold gs1, gs2 in *.
refine ((fg s1)^ @ _ @ fg s2).
rewrite Hgs1, Hgs2.
f_ap.
simple refine (path_sigma _ _ _ _ _); [ | apply path_ishprop ]; simpl.
destruct px as [px | px] ; destruct py as [py | py]
; refine (Trunc_rec _ px) ; clear px ; intro px
; refine (Trunc_rec _ py) ; clear py ; intro py.
* apply (px @ py^).
* refine (px @ _ @ py^). auto.
* refine (px @ _^ @ py^). auto.
* apply (px @ py^).
}
destruct px as [px | px] ; destruct py as [py | py]
; refine (Trunc_rec _ px) ; clear px ; intro px
; refine (Trunc_rec _ py) ; clear py ; intro py.
** apply (px @ py^).
** refine (px @ _ @ py^). auto.
** refine (px @ _^ @ py^). auto.
** apply (px @ py^).
Defined.
exists a.
apply (tr(inl(tr idpath))).
- refine (inl _).
pose (s1 := (a;tr(inl(tr idpath)))
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
pose (s2 := (b;tr(inr(tr idpath)))
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
refine (ap (fun x => x.1) (gf s1)^ @ _ @ (ap (fun x => x.1) (gf s2))).
assert (fs_eq : f s1 = f s2).
{ by apply path_ishprop. }
refine (ap (fun x => (g x).1) fs_eq).
- (* Otherwise, ¬(a = b) *)
refine (inr (fun p => _)).
pose (s1 := inl (inr tt) : Fin n + Unit + Unit).
pose (s2 := inr tt : Fin n + Unit + Unit).
pose (gs1 := g s1).
pose (c := gs1).
pose (gs2 := g s2).
pose (d := gs2).
assert (Hgs1 : gs1 = c) by reflexivity.
assert (Hgs2 : gs2 = d) by reflexivity.
destruct c as [x px'], d as [y py'].
simple refine (Trunc_ind _ _ px') ; intros px
; simple refine (Trunc_ind _ _ py') ; intros py ; simpl.
enough (s1 = s2) as X.
{
unfold s1, s2 in X.
contradiction (inl_ne_inr _ _ X).
}
refine ((fg s1)^ @ ap f (Hgs1 @ _ @ Hgs2^) @ fg s2).
simple refine (path_sigma _ _ _ _ _); [ | apply path_ishprop ]; simpl.
destruct px as [px | px] ; destruct py as [py | py]
; refine (Trunc_rec _ px) ; clear px ; intro px
; refine (Trunc_rec _ py) ; clear py ; intro py.
* apply (px @ py^).
* refine (px @ p @ py^).
* refine (px @ p^ @ py^).
* apply (px @ py^).
Defined.
End finite_hott.
Section singleton_set.
Variable (A : Type).
Context `{Univalence}.
Variable (HA : forall a, {b : A & b {|a|}} <~> Fin 1).
Definition el x : {b : A & b {|x|}} := (x;tr idpath).
Theorem single_bfin_set (HA : forall a, {b : A & b {|a|}} <~> Fin 1)
: forall (x : A) (p : x = x), p = idpath.
Theorem single_bfin_set : forall (x : A) (p : x = x), p = idpath.
Proof.
intros x p.
specialize (HA x).
@ -172,6 +154,13 @@ Section singleton_set.
}
apply path_ishprop.
Defined.
Global Instance set_singleton : IsHSet A.
Proof.
refine hset_axiomK.
unfold axiomK.
apply single_bfin_set.
Defined.
End singleton_set.
Section empty.
@ -179,6 +168,7 @@ Section empty.
Variable (X : A -> hProp)
(Xequiv : {a : A & a X} <~> Fin 0).
Context `{Univalence}.
Lemma X_empty : X = .
Proof.
apply path_forall.
@ -217,8 +207,7 @@ Section split.
apply path_sigma_hprop. apply p.
- rewrite transport_paths_FlFr.
hott_simpl; cbn.
rewrite ap_compose.
rewrite (ap_compose inl f^-1).
rewrite ap_compose, (ap_compose inl f^-1).
rewrite ap_inl_path_sum_inl.
repeat (rewrite transport_paths_FlFr; hott_simpl).
rewrite !ap_pp.
@ -233,7 +222,8 @@ Section split.
rewrite concat_Vp.
rewrite (concat_p_pp (ap pr1 (eissect f (f^-1 (inl x))))^).
rewrite concat_Vp.
hott_simpl. }
hott_simpl.
}
exists (fun a => BuildhProp (P' a)).
exists (f^-1 (inr tt)).1.
split.
@ -245,8 +235,9 @@ Section split.
- intros [a [y p]]; cbn.
eapply path_sigma with p^.
apply path_ishprop.
- intros x; cbn.
reflexivity. }
- intros x.
reflexivity.
}
{ intros a.
unfold P'.
apply path_iff_hprop.
@ -279,9 +270,8 @@ Section Bfin_no_singletons.
Definition S1toSig (x : S1) : {x : S1 & merely(x = base)}.
Proof.
exists x.
simple refine (S1_ind (fun z => merely(z = base)) _ _ x) ; simpl.
- apply (tr idpath).
- apply path_ishprop.
simple refine (S1_ind (fun z => merely(z = base)) (tr idpath) _ x).
apply path_ishprop.
Defined.
Instance S1toSig_equiv : IsEquiv S1toSig.
@ -289,10 +279,9 @@ Section Bfin_no_singletons.
apply isequiv_biinv.
split.
- exists (fun x => x.1).
simple refine (S1_ind _ _ _) ; simpl.
* reflexivity.
* rewrite transport_paths_FlFr.
hott_simpl.
simple refine (S1_ind _ idpath _) ; simpl.
rewrite transport_paths_FlFr.
hott_simpl.
- exists (fun x => x.1).
intros [z x].
simple refine (path_sigma _ _ _ _ _) ; simpl.
@ -322,7 +311,8 @@ End Bfin_no_singletons.
(* If A has decidable equality, then every Bfin subobject has decidable membership *)
Section dec_membership.
Variable (A : Type).
Context `{DecidablePaths A} `{Univalence}.
Context `{MerelyDecidablePaths A} `{Univalence}.
Global Instance DecidableMembership (P : Sub A) (Hfin : Bfin P) (a : A) :
Decidable (a P).
Proof.
@ -341,20 +331,23 @@ Section dec_membership.
unfold member, sub_membership.
rewrite (HP a).
destruct (IHn P' HP') as [IH | IH].
+ left. apply (tr (inl IH)).
+ destruct (dec (a = b)) as [Hab | Hab].
left. apply (tr (inr (tr Hab))).
right. intros α. strip_truncations.
destruct α as [? | ?]; [ | strip_truncations]; contradiction.
* apply (inl (tr (inl IH))).
* destruct (m_dec_path a b) as [Hab | Hab].
+ apply (inl (tr (inr Hab))).
+ refine (inr(fun a => _)).
strip_truncations.
destruct a as [? | t] ; [ | strip_truncations] ; try contradiction.
contradiction (Hab (tr t)).
Defined.
End dec_membership.
Section bfin_kfin.
Context `{Univalence}.
Lemma bfin_to_kfin : forall (B : Type), Finite B -> Kf B.
Proof.
apply finite_ind_hprop.
- intros. apply _.
- apply _.
- apply Kf_unfold.
exists . intros [].
- intros B [n f] IH.
@ -393,56 +386,43 @@ Section kfin_bfin.
Proof.
intros HYb.
unshelve eapply BuildEquiv.
{ intros [a Ha]. cbn in Ha.
- intros [a Ha]. cbn in Ha.
destruct (dec (BuildhProp (a = b))) as [Hab | Hab].
- right. apply tt.
- left. exists a.
+ apply (inr tt).
+ refine (inl(a;_)).
strip_truncations.
destruct Ha as [HXa | HYa].
+ refine (Empty_rec _).
* refine (Empty_rec _).
strip_truncations.
by apply Hab.
+ apply HYa. }
{ apply isequiv_biinv.
unshelve esplit; cbn.
- unshelve eexists.
+ intros [[a Ha] | []].
* exists a.
apply tr.
right. apply Ha.
* exists b.
apply (tr (inl (tr idpath))).
+ intros [a Ha]; cbn.
strip_truncations.
simple refine (path_sigma' _ _ _); [ | apply path_ishprop ].
destruct (H a b); cbn.
* apply p^.
* reflexivity.
- unshelve eexists. (* TODO ACHTUNG CODE DUPLICATION *)
+ intros [[a Ha] | []].
* exists a.
apply tr.
right. apply Ha.
* exists b.
apply (tr (inl (tr idpath))).
+ intros [[a Ha] | []]; cbn.
destruct (dec (_ = b)) as [Hb | Hb]; cbn.
{ refine (Empty_rec _).
rewrite Hb in Ha.
contradiction. }
{ reflexivity. }
destruct (dec (b = b)); [ reflexivity | contradiction ]. }
* apply HYa.
- apply isequiv_biinv.
unshelve esplit ; (unshelve eexists
; [intros [[a Ha] | []]
; [apply (a;(tr(inr Ha))) | apply (b;(tr(inl (tr idpath))))]
| ]).
+ intros [a Ha]; cbn.
strip_truncations.
simple refine (path_sigma' _ _ _); [ | apply path_ishprop ].
destruct (H a b); cbn.
* apply p^.
* reflexivity.
+ intros [[a Ha] | []]; cbn.
destruct (dec (a = b)) as [Hb | Hb]; cbn.
* refine (Empty_rec _).
rewrite Hb in Ha.
contradiction.
* reflexivity.
* destruct (dec (b = b)); [ reflexivity | contradiction ].
Defined.
Theorem bfin_union : @closedUnion A Bfin.
Proof.
intros X Y HX HY.
destruct HX as [n fX].
intros X Y [n fX] HY.
strip_truncations.
revert fX. revert X.
induction n; intros X fX.
- rewrite (X_empty _ X fX).
rewrite (neutralL_max (Sub A)).
- rewrite (X_empty _ X fX), (neutralL_max (Sub A)).
apply HY.
- destruct (split X n fX) as
(X' & b & HX' & HX).
@ -469,48 +449,45 @@ Section kfin_bfin.
exists (n'.+1).
apply tr.
transitivity ({a : A & a (fun a => merely (a = b)) (X' Y)}).
{ apply equiv_functor_sigma_id.
* apply equiv_functor_sigma_id.
intro a.
rewrite <- (associative_max (Sub A)).
assert (X = X' (fun a => merely (a = b))) as HX_.
{ apply path_forall. intros ?.
unfold union, sub_union, max_fun.
apply HX. }
rewrite HX_.
rewrite <- (commutative_max (Sub A) X').
reflexivity. }
cbn[Fin].
etransitivity. apply (notIn_ext_union_singleton b _ HX'Yb).
by rewrite ((equiv_path _ _)^-1 fw).
** apply path_forall. intros ?.
unfold union, sub_union, max_fun.
apply HX.
** rewrite HX_, <- (commutative_max (Sub A) X').
reflexivity.
* etransitivity.
{ apply (notIn_ext_union_singleton b _ HX'Yb). }
by rewrite ((equiv_path _ _)^-1 fw).
Defined.
Definition FSet_to_Bfin : forall (X : FSet A), Bfin (map X).
Proof.
hinduction; try (intros; apply path_ishprop).
- exists 0. apply tr. simpl.
- exists 0.
apply tr.
simple refine (BuildEquiv _ _ _ _).
destruct 1 as [? []].
- intros a.
apply _.
- intros Y1 Y2 HY1 HY2.
apply bfin_union; auto.
- apply _.
- intros.
apply bfin_union ; assumption.
Defined.
End kfin_bfin.
Instance Kf_to_Bf (X : Type) `{Univalence} `{DecidablePaths X} (Hfin : Kf X) : Finite X.
Global Instance Kf_to_Bf (X : Type) `{Univalence} `{DecidablePaths X} (Hfin : Kf X) : Finite X.
Proof.
apply Kf_unfold in Hfin.
destruct Hfin as [Y HY].
pose (X' := FSet_to_Bfin _ Y).
unfold Bfin in X'.
simple refine (finite_equiv' _ _ X').
destruct (Kf_unfold _ Hfin) as [Y HY].
simple refine (finite_equiv' _ _ (FSet_to_Bfin _ Y)).
unshelve esplit.
- intros [a ?]. apply a.
- apply isequiv_biinv. split.
- apply (fun z => z.1).
- apply isequiv_biinv.
split.
* exists (fun a => (a;HY a)).
intros [b Hb].
apply path_sigma' with idpath.
apply path_ishprop.
* exists (fun a => (a;HY a)).
intros b. reflexivity.
* refine (fun a => (a;HY a);fun _ => _).
reflexivity.
Defined.