mirror of https://github.com/nmvdw/HITs-Examples
Use the [Functorish] instance from the HoTT library
This commit is contained in:
parent
3274bed4e0
commit
1a3bb2cb5a
|
@ -1,8 +1,8 @@
|
|||
(* [FSet] is a (strong and stable) finite powerset monad *)
|
||||
Require Import definition properties.
|
||||
Require Export definition properties.
|
||||
Require Import HoTT HitTactics.
|
||||
|
||||
Definition fmap {A B : Type} : (A -> B) -> FSet A -> FSet B.
|
||||
Definition ffmap {A B : Type} : (A -> B) -> FSet A -> FSet B.
|
||||
Proof.
|
||||
intro f.
|
||||
hrecursion.
|
||||
|
@ -16,15 +16,18 @@ Proof.
|
|||
- simpl. intro x. apply idem.
|
||||
Defined.
|
||||
|
||||
Lemma fmap_1 {A : Type} `{Funext} : @fmap A A idmap = idmap.
|
||||
Lemma ffmap_1 `{Funext} {A : Type} : @ffmap A A idmap = idmap.
|
||||
Proof.
|
||||
apply path_forall.
|
||||
intro x. hinduction x; try (cbn; intros; f_ap);
|
||||
try (intros; apply set_path2).
|
||||
Defined.
|
||||
|
||||
Lemma fmap_compose {A B C : Type} `{Funext} (f : A -> B) (g : B -> C) :
|
||||
fmap (g o f) = fmap g o fmap f.
|
||||
Global Instance fset_functorish `{Funext}: Functorish FSet
|
||||
:= { fmap := @ffmap; fmap_idmap := @ffmap_1 _ }.
|
||||
|
||||
Lemma ffmap_compose {A B C : Type} `{Funext} (f : A -> B) (g : B -> C) :
|
||||
fmap FSet (g o f) = fmap _ g o fmap _ f.
|
||||
Proof.
|
||||
apply path_forall. intro x.
|
||||
hrecursion x; try (cbn; intros; f_ap);
|
||||
|
@ -45,7 +48,7 @@ hrecursion.
|
|||
Defined.
|
||||
|
||||
Lemma join_assoc {A : Type} (X : FSet (FSet (FSet A))) :
|
||||
join (fmap join X) = join (join X).
|
||||
join (ffmap join X) = join (join X).
|
||||
Proof.
|
||||
hrecursion X; try (cbn; intros; f_ap);
|
||||
try (intros; apply set_path2).
|
||||
|
@ -56,12 +59,12 @@ Lemma join_return_1 {A : Type} (X : FSet A) :
|
|||
Proof. reflexivity. Defined.
|
||||
|
||||
Lemma join_return_fmap {A : Type} (X : FSet A) :
|
||||
join ({| X |}) = join (fmap (fun x => {|x|}) X).
|
||||
join ({| X |}) = join (ffmap (fun x => {|x|}) X).
|
||||
Proof.
|
||||
hrecursion X; try (cbn; intros; f_ap);
|
||||
try (intros; apply set_path2).
|
||||
Defined.
|
||||
|
||||
Lemma join_fmap_return_1 {A : Type} (X : FSet A) :
|
||||
join (fmap (fun x => {|x|}) X) = X.
|
||||
join (ffmap (fun x => {|x|}) X) = X.
|
||||
Proof. refine ((join_return_fmap _)^ @ join_return_1 _). Defined.
|
||||
|
|
Loading…
Reference in New Issue