mirror of
https://github.com/nmvdw/HITs-Examples
synced 2025-12-16 23:23:50 +01:00
Some cleaning
This commit is contained in:
@@ -9,8 +9,7 @@ Section operations_isIn.
|
||||
|
||||
Lemma union_idem : forall x: FSet A, U x x = x.
|
||||
Proof.
|
||||
hinduction;
|
||||
try (intros ; apply set_path2).
|
||||
hinduction ; try (intros ; apply set_path2).
|
||||
- apply nl.
|
||||
- apply idem.
|
||||
- intros x y P Q.
|
||||
@@ -21,16 +20,16 @@ Section operations_isIn.
|
||||
rewrite (comm y x).
|
||||
rewrite <- (assoc x y y).
|
||||
f_ap.
|
||||
Qed.
|
||||
Defined.
|
||||
|
||||
(** ** Properties about subset relation. *)
|
||||
Lemma subset_union (X Y : FSet A) :
|
||||
subset X Y -> U X Y = Y.
|
||||
Proof.
|
||||
hinduction X; try (intros; apply path_forall; intro; apply set_path2).
|
||||
hinduction X ; try (intros; apply path_forall; intro; apply set_path2).
|
||||
- intros. apply nl.
|
||||
- intros a. hinduction Y;
|
||||
try (intros; apply path_forall; intro; apply set_path2).
|
||||
- intros a.
|
||||
hinduction Y ; try (intros; apply path_forall; intro; apply set_path2).
|
||||
+ intro.
|
||||
contradiction.
|
||||
+ intro a0.
|
||||
@@ -53,34 +52,28 @@ Section operations_isIn.
|
||||
rewrite (IH2 G2).
|
||||
apply (IH1 G1).
|
||||
Defined.
|
||||
|
||||
|
||||
Lemma subset_union_l (X : FSet A) :
|
||||
forall Y, subset X (U X Y).
|
||||
Proof.
|
||||
hinduction X ;
|
||||
try (repeat (intro; intros; apply path_forall); intro; apply equiv_hprop_allpath ; apply _).
|
||||
hinduction X ; try (repeat (intro; intros; apply path_forall);
|
||||
intro ; apply equiv_hprop_allpath ; apply _).
|
||||
- apply (fun _ => tt).
|
||||
- intros a Y.
|
||||
apply tr ; left ; apply tr ; reflexivity.
|
||||
apply (tr(inl(tr idpath))).
|
||||
- intros X1 X2 HX1 HX2 Y.
|
||||
split.
|
||||
* rewrite <- assoc. apply HX1.
|
||||
* rewrite (comm X1 X2). rewrite <- assoc. apply HX2.
|
||||
Defined.
|
||||
|
||||
(* Union and membership *)
|
||||
Lemma union_isIn (X Y : FSet A) (a : A) :
|
||||
isIn a (U X Y) = isIn a X ∨ isIn a Y.
|
||||
Proof.
|
||||
reflexivity.
|
||||
Defined.
|
||||
|
||||
(* simplify it using extensionality *)
|
||||
Lemma comprehension_or : forall ϕ ψ (x: FSet A),
|
||||
comprehension (fun a => orb (ϕ a) (ψ a)) x = U (comprehension ϕ x)
|
||||
(comprehension ψ x).
|
||||
Proof.
|
||||
intros ϕ ψ.
|
||||
hinduction; try (intros; apply set_path2).
|
||||
hinduction ; try (intros; apply set_path2).
|
||||
- apply (union_idem _)^.
|
||||
- intros.
|
||||
destruct (ϕ a) ; destruct (ψ a) ; symmetry.
|
||||
@@ -108,16 +101,43 @@ Section properties.
|
||||
Context `{Univalence}.
|
||||
|
||||
(** isIn properties *)
|
||||
Lemma singleton_isIn (a b: A) : isIn a (L b) -> Trunc (-1) (a = b).
|
||||
Definition empty_isIn (a: A) : isIn a E -> Empty := idmap.
|
||||
|
||||
Definition singleton_isIn (a b: A) : isIn a (L b) -> Trunc (-1) (a = b) := idmap.
|
||||
|
||||
Definition union_isIn (X Y : FSet A) (a : A)
|
||||
: isIn a (U X Y) = isIn a X ∨ isIn a Y := idpath.
|
||||
|
||||
Lemma comprehension_isIn (ϕ : A -> Bool) (a : A) : forall X : FSet A,
|
||||
isIn a (comprehension ϕ X) = if ϕ a then isIn a X else False_hp.
|
||||
Proof.
|
||||
apply idmap.
|
||||
Defined.
|
||||
|
||||
Lemma empty_isIn (a: A) : isIn a E -> Empty.
|
||||
Proof.
|
||||
apply idmap.
|
||||
hinduction ; try (intros ; apply set_path2) ; cbn.
|
||||
- destruct (ϕ a) ; reflexivity.
|
||||
- intros b.
|
||||
assert (forall c d, ϕ a = c -> ϕ b = d ->
|
||||
a ∈ (if ϕ b then {|b|} else ∅)
|
||||
=
|
||||
(if ϕ a then BuildhProp (Trunc (-1) (a = b)) else False_hp)) as X.
|
||||
{
|
||||
intros c d Hc Hd.
|
||||
destruct c ; destruct d ; rewrite Hc, Hd ; try reflexivity
|
||||
; apply path_iff_hprop ; try contradiction ; intros ; strip_truncations
|
||||
; apply (false_ne_true).
|
||||
* apply (Hd^ @ ap ϕ X^ @ Hc).
|
||||
* apply (Hc^ @ ap ϕ X @ Hd).
|
||||
}
|
||||
apply (X (ϕ a) (ϕ b) idpath idpath).
|
||||
- intros X Y H1 H2.
|
||||
rewrite H1, H2.
|
||||
destruct (ϕ a).
|
||||
* reflexivity.
|
||||
* apply path_iff_hprop.
|
||||
** intros Z ; strip_truncations.
|
||||
destruct Z ; assumption.
|
||||
** intros ; apply tr ; right ; assumption.
|
||||
Defined.
|
||||
|
||||
(* The proof can be simplified using extensionality *)
|
||||
(** comprehension properties *)
|
||||
Lemma comprehension_false Y : comprehension (fun (_ : A) => false) Y = E.
|
||||
Proof.
|
||||
@@ -125,11 +145,11 @@ Section properties.
|
||||
- reflexivity.
|
||||
- reflexivity.
|
||||
- intros x y IHa IHb.
|
||||
rewrite IHa.
|
||||
rewrite IHb.
|
||||
rewrite IHa, IHb.
|
||||
apply union_idem.
|
||||
Defined.
|
||||
|
||||
(* Can be simplified using extensionality *)
|
||||
Lemma comprehension_subset : forall ϕ (X : FSet A),
|
||||
U (comprehension ϕ X) X = X.
|
||||
Proof.
|
||||
@@ -160,54 +180,21 @@ Section properties.
|
||||
- intros X Y TX TY.
|
||||
strip_truncations.
|
||||
destruct TX as [XE | HX] ; destruct TY as [YE | HY] ; try(strip_truncations ; apply tr).
|
||||
* apply tr ; left.
|
||||
* refine (tr (inl _)).
|
||||
rewrite XE, YE.
|
||||
apply (union_idem E).
|
||||
* right.
|
||||
destruct HY as [a Ya].
|
||||
apply tr.
|
||||
* destruct HY as [a Ya].
|
||||
refine (inr (tr _)).
|
||||
exists a.
|
||||
apply (tr (inr Ya)).
|
||||
* right.
|
||||
destruct HX as [a Xa].
|
||||
apply tr.
|
||||
* destruct HX as [a Xa].
|
||||
refine (inr (tr _)).
|
||||
exists a.
|
||||
apply (tr (inl Xa)).
|
||||
* right.
|
||||
destruct HX as [a Xa].
|
||||
destruct HY as [b Yb].
|
||||
apply tr.
|
||||
* destruct (HX, HY) as [[a Xa] [b Yb]].
|
||||
refine (inr (tr _)).
|
||||
exists a.
|
||||
apply (tr (inl Xa)).
|
||||
Defined.
|
||||
|
||||
Lemma comprehension_isIn (ϕ : A -> Bool) (a : A) : forall X : FSet A,
|
||||
isIn a (comprehension ϕ X) = if ϕ a then isIn a X else False_hp.
|
||||
Proof.
|
||||
hinduction ; try (intros ; apply set_path2) ; cbn.
|
||||
- destruct (ϕ a) ; reflexivity.
|
||||
- intros b.
|
||||
assert (forall c d, ϕ a = c -> ϕ b = d ->
|
||||
a ∈ (if ϕ b then {|b|} else ∅)
|
||||
=
|
||||
(if ϕ a then BuildhProp (Trunc (-1) (a = b)) else False_hp)) as X.
|
||||
{
|
||||
intros c d Hc Hd.
|
||||
destruct c ; destruct d ; rewrite Hc, Hd ; try reflexivity
|
||||
; apply path_iff_hprop ; try contradiction ; intros ; strip_truncations
|
||||
; apply (false_ne_true).
|
||||
* apply (Hd^ @ ap ϕ X^ @ Hc).
|
||||
* apply (Hc^ @ ap ϕ X @ Hd).
|
||||
}
|
||||
apply (X (ϕ a) (ϕ b) idpath idpath).
|
||||
- intros X Y H1 H2.
|
||||
rewrite H1, H2.
|
||||
destruct (ϕ a).
|
||||
* reflexivity.
|
||||
* apply path_iff_hprop.
|
||||
** intros Z ; strip_truncations.
|
||||
destruct Z ; assumption.
|
||||
** intros ; apply tr ; right ; assumption.
|
||||
Defined.
|
||||
|
||||
End properties.
|
||||
|
||||
Reference in New Issue
Block a user