mirror of
https://github.com/nmvdw/HITs-Examples
synced 2025-12-19 00:13:51 +01:00
Some cleaning
This commit is contained in:
@@ -42,19 +42,22 @@ Module Export FSet.
|
||||
Arguments nl {_} _.
|
||||
Arguments nr {_} _.
|
||||
Arguments idem {_} _.
|
||||
Notation "{| x |}" := (L x).
|
||||
Infix "∪" := U (at level 8, right associativity).
|
||||
Notation "∅" := E.
|
||||
|
||||
Section FSet_induction.
|
||||
Variable A: Type.
|
||||
Variable (P : FSet A -> Type).
|
||||
Variable (eP : P E).
|
||||
Variable (lP : forall a: A, P (L a)).
|
||||
Variable (uP : forall (x y: FSet A), P x -> P y -> P (U x y)).
|
||||
Variable (eP : P ∅).
|
||||
Variable (lP : forall a: A, P {|a |}).
|
||||
Variable (uP : forall (x y: FSet A), P x -> P y -> P (x ∪ y)).
|
||||
Variable (assocP : forall (x y z : FSet A)
|
||||
(px: P x) (py: P y) (pz: P z),
|
||||
assoc x y z #
|
||||
(uP x (U y z) px (uP y z py pz))
|
||||
(uP x (y ∪ z) px (uP y z py pz))
|
||||
=
|
||||
(uP (U x y) z (uP x y px py) pz)).
|
||||
(uP (x ∪ y) z (uP x y px py) pz)).
|
||||
Variable (commP : forall (x y: FSet A) (px: P x) (py: P y),
|
||||
comm x y #
|
||||
uP x y px py = uP y x py px).
|
||||
@@ -71,26 +74,24 @@ Module Export FSet.
|
||||
{struct x}
|
||||
: P x
|
||||
:= (match x return _ -> _ -> _ -> _ -> _ -> P x with
|
||||
| E => fun _ => fun _ => fun _ => fun _ => fun _ => eP
|
||||
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => lP a
|
||||
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => uP y z
|
||||
(FSet_ind y)
|
||||
(FSet_ind z)
|
||||
| ∅ => fun _ _ _ _ _ => eP
|
||||
| {|a|} => fun _ _ _ _ _ => lP a
|
||||
| y ∪ z => fun _ _ _ _ _ => uP y z (FSet_ind y) (FSet_ind z)
|
||||
end) assocP commP nlP nrP idemP.
|
||||
|
||||
|
||||
Axiom FSet_ind_beta_assoc : forall (x y z : FSet A),
|
||||
apD FSet_ind (assoc x y z) =
|
||||
(assocP x y z (FSet_ind x) (FSet_ind y) (FSet_ind z)).
|
||||
(assocP x y z (FSet_ind x) (FSet_ind y) (FSet_ind z)).
|
||||
|
||||
Axiom FSet_ind_beta_comm : forall (x y : FSet A),
|
||||
apD FSet_ind (comm x y) = (commP x y (FSet_ind x) (FSet_ind y)).
|
||||
apD FSet_ind (comm x y) = commP x y (FSet_ind x) (FSet_ind y).
|
||||
|
||||
Axiom FSet_ind_beta_nl : forall (x : FSet A),
|
||||
apD FSet_ind (nl x) = (nlP x (FSet_ind x)).
|
||||
apD FSet_ind (nl x) = nlP x (FSet_ind x).
|
||||
|
||||
Axiom FSet_ind_beta_nr : forall (x : FSet A),
|
||||
apD FSet_ind (nr x) = (nrP x (FSet_ind x)).
|
||||
apD FSet_ind (nr x) = nrP x (FSet_ind x).
|
||||
|
||||
Axiom FSet_ind_beta_idem : forall (x : A), apD FSet_ind (idem x) = idemP x.
|
||||
End FSet_induction.
|
||||
@@ -183,9 +184,11 @@ Module Export FSet.
|
||||
|
||||
End FSet_recursion.
|
||||
|
||||
Instance FSet_recursion A : HitRecursion (FSet A) := {
|
||||
indTy := _; recTy := _;
|
||||
H_inductor := FSet_ind A; H_recursor := FSet_rec A }.
|
||||
Instance FSet_recursion A : HitRecursion (FSet A) :=
|
||||
{
|
||||
indTy := _; recTy := _;
|
||||
H_inductor := FSet_ind A; H_recursor := FSet_rec A
|
||||
}.
|
||||
|
||||
End FSet.
|
||||
|
||||
@@ -195,10 +198,12 @@ Notation "∅" := E.
|
||||
|
||||
Section set_sphere.
|
||||
From HoTT.HIT Require Import Circle.
|
||||
From HoTT Require Import UnivalenceAxiom.
|
||||
Instance S1_recursion : HitRecursion S1 := {
|
||||
indTy := _; recTy := _;
|
||||
H_inductor := S1_ind; H_recursor := S1_rec }.
|
||||
Context `{Univalence}.
|
||||
Instance S1_recursion : HitRecursion S1 :=
|
||||
{
|
||||
indTy := _; recTy := _;
|
||||
H_inductor := S1_ind; H_recursor := S1_rec
|
||||
}.
|
||||
|
||||
Variable A : Type.
|
||||
|
||||
@@ -206,8 +211,7 @@ Section set_sphere.
|
||||
Proof.
|
||||
hrecursion x.
|
||||
- exact loop.
|
||||
- etransitivity.
|
||||
eapply (@transport_paths_FlFr S1 S1 idmap idmap).
|
||||
- refine (transport_paths_FlFr _ _ @ _).
|
||||
hott_simpl.
|
||||
Defined.
|
||||
|
||||
@@ -225,11 +229,10 @@ Section set_sphere.
|
||||
Proof.
|
||||
hrecursion x.
|
||||
- exact loop.
|
||||
- etransitivity.
|
||||
apply (@transport_paths_FlFr _ _ (fun x => S1op base x) idmap _ _ loop loop).
|
||||
- refine (transport_paths_FlFr loop _ @ _).
|
||||
hott_simpl.
|
||||
apply moveR_pM. apply moveR_pM. hott_simpl.
|
||||
etransitivity. apply (ap_V (S1op base) loop).
|
||||
refine (ap_V _ _ @ _).
|
||||
f_ap. apply S1_rec_beta_loop.
|
||||
Defined.
|
||||
|
||||
@@ -237,8 +240,7 @@ Section set_sphere.
|
||||
Proof.
|
||||
hrecursion z.
|
||||
- reflexivity.
|
||||
- etransitivity.
|
||||
apply (@transport_paths_FlFr _ _ (fun z => S1op x (S1op y z)) (S1op (S1op x y)) _ _ loop idpath).
|
||||
- refine (transport_paths_FlFr loop _ @ _).
|
||||
hott_simpl.
|
||||
apply moveR_Mp. hott_simpl.
|
||||
rewrite S1_rec_beta_loop.
|
||||
@@ -274,7 +276,7 @@ Section set_sphere.
|
||||
|
||||
Lemma FSet_S_ap : (nl (@E A)) = (nr E) -> idpath = loop.
|
||||
Proof.
|
||||
intros H.
|
||||
intros H1.
|
||||
enough (ap FSet_to_S (nl E) = ap FSet_to_S (nr E)) as H'.
|
||||
- rewrite FSet_rec_beta_nl in H'.
|
||||
rewrite FSet_rec_beta_nr in H'.
|
||||
@@ -285,7 +287,7 @@ Section set_sphere.
|
||||
|
||||
Lemma FSet_not_hset : IsHSet (FSet A) -> False.
|
||||
Proof.
|
||||
intros H.
|
||||
intros H1.
|
||||
enough (idpath = loop).
|
||||
- assert (S1_encode _ idpath = S1_encode _ (loopexp loop (pos Int.one))) as H' by f_ap.
|
||||
rewrite S1_encode_loopexp in H'. simpl in H'. symmetry in H'.
|
||||
|
||||
Reference in New Issue
Block a user