mirror of
				https://github.com/nmvdw/HITs-Examples
				synced 2025-11-04 07:33:51 +01:00 
			
		
		
		
	Splitted cons_repr
This commit is contained in:
		@@ -4,14 +4,18 @@ lattice.v
 | 
				
			|||||||
disjunction.v
 | 
					disjunction.v
 | 
				
			||||||
representations/bad.v
 | 
					representations/bad.v
 | 
				
			||||||
representations/definition.v
 | 
					representations/definition.v
 | 
				
			||||||
 | 
					representations/cons_repr.v
 | 
				
			||||||
 | 
					fsets/operations_cons_repr.v
 | 
				
			||||||
 | 
					fsets/properties_cons_repr.v
 | 
				
			||||||
 | 
					fsets/isomorphism.v
 | 
				
			||||||
fsets/operations.v
 | 
					fsets/operations.v
 | 
				
			||||||
fsets/properties.v
 | 
					fsets/properties.v
 | 
				
			||||||
fsets/operations_decidable.v
 | 
					fsets/operations_decidable.v
 | 
				
			||||||
fsets/extensionality.v
 | 
					fsets/extensionality.v
 | 
				
			||||||
fsets/properties_decidable.v
 | 
					fsets/properties_decidable.v
 | 
				
			||||||
 | 
					fsets/length.v
 | 
				
			||||||
fsets/monad.v
 | 
					fsets/monad.v
 | 
				
			||||||
FSets.v
 | 
					FSets.v
 | 
				
			||||||
representations/cons_repr.v
 | 
					 | 
				
			||||||
implementations/lists.v
 | 
					implementations/lists.v
 | 
				
			||||||
variations/enumerated.v
 | 
					variations/enumerated.v
 | 
				
			||||||
#empty_set.v
 | 
					#empty_set.v
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -4,108 +4,108 @@ From representations Require Import definition.
 | 
				
			|||||||
From fsets Require Import operations properties.
 | 
					From fsets Require Import operations properties.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Section ext.
 | 
					Section ext.
 | 
				
			||||||
Context {A : Type}.
 | 
					  Context {A : Type}.
 | 
				
			||||||
Context `{Univalence}.
 | 
					  Context `{Univalence}.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Lemma subset_union_equiv
 | 
					  Lemma subset_union_equiv
 | 
				
			||||||
  : forall X Y : FSet A, subset X Y <~> U X Y = Y.
 | 
					    : forall X Y : FSet A, subset X Y <~> U X Y = Y.
 | 
				
			||||||
Proof.
 | 
					  Proof.
 | 
				
			||||||
  intros X Y.
 | 
					    intros X Y.
 | 
				
			||||||
  eapply equiv_iff_hprop_uncurried.
 | 
					    eapply equiv_iff_hprop_uncurried.
 | 
				
			||||||
  split.
 | 
					 | 
				
			||||||
  - apply subset_union.
 | 
					 | 
				
			||||||
  - intro HXY.
 | 
					 | 
				
			||||||
    rewrite <- HXY.
 | 
					 | 
				
			||||||
    apply subset_union_l.
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Lemma subset_isIn (X Y : FSet A) :
 | 
					 | 
				
			||||||
  (forall (a : A), isIn a X -> isIn a Y)
 | 
					 | 
				
			||||||
  <~> (subset X Y).
 | 
					 | 
				
			||||||
Proof.
 | 
					 | 
				
			||||||
  eapply equiv_iff_hprop_uncurried.
 | 
					 | 
				
			||||||
  split.
 | 
					 | 
				
			||||||
  - hinduction X ;
 | 
					 | 
				
			||||||
      try (intros; repeat (apply path_forall; intro); apply equiv_hprop_allpath ; apply _).
 | 
					 | 
				
			||||||
    + intros ; reflexivity.
 | 
					 | 
				
			||||||
    + intros a f.
 | 
					 | 
				
			||||||
      apply f.
 | 
					 | 
				
			||||||
      apply tr ; reflexivity.
 | 
					 | 
				
			||||||
    + intros X1 X2 H1 H2 f.
 | 
					 | 
				
			||||||
      enough (subset X1 Y).
 | 
					 | 
				
			||||||
      enough (subset X2 Y).
 | 
					 | 
				
			||||||
      { split. apply X. apply X0. }
 | 
					 | 
				
			||||||
      * apply H2.
 | 
					 | 
				
			||||||
        intros a Ha.
 | 
					 | 
				
			||||||
        apply f.
 | 
					 | 
				
			||||||
        apply tr.
 | 
					 | 
				
			||||||
        right.
 | 
					 | 
				
			||||||
        apply Ha.
 | 
					 | 
				
			||||||
      * apply H1.
 | 
					 | 
				
			||||||
        intros a Ha.
 | 
					 | 
				
			||||||
        apply f.
 | 
					 | 
				
			||||||
        apply tr.
 | 
					 | 
				
			||||||
        left.
 | 
					 | 
				
			||||||
        apply Ha.
 | 
					 | 
				
			||||||
  - hinduction X ;
 | 
					 | 
				
			||||||
      try (intros; repeat (apply path_forall; intro); apply equiv_hprop_allpath ; apply _).
 | 
					 | 
				
			||||||
    + intros. contradiction.
 | 
					 | 
				
			||||||
    + intros b f a.
 | 
					 | 
				
			||||||
      simple refine (Trunc_ind _ _) ; cbn.
 | 
					 | 
				
			||||||
      intro p.
 | 
					 | 
				
			||||||
      rewrite p^ in f.
 | 
					 | 
				
			||||||
      apply f.
 | 
					 | 
				
			||||||
    + intros X1 X2 IH1 IH2 [H1 H2] a.
 | 
					 | 
				
			||||||
      simple refine (Trunc_ind _ _) ; cbn.
 | 
					 | 
				
			||||||
      intros [C1 | C2].
 | 
					 | 
				
			||||||
      ++ apply (IH1 H1 a C1).
 | 
					 | 
				
			||||||
      ++ apply (IH2 H2 a C2).
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
(** ** Extensionality proof *)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Lemma eq_subset' (X Y : FSet A) : X = Y <~> (U Y X = X) * (U X Y = Y).
 | 
					 | 
				
			||||||
Proof.
 | 
					 | 
				
			||||||
  unshelve eapply BuildEquiv.
 | 
					 | 
				
			||||||
  { intro H'. rewrite H'. split; apply union_idem. }
 | 
					 | 
				
			||||||
  unshelve esplit.
 | 
					 | 
				
			||||||
  { intros [H1 H2]. etransitivity. apply H1^.
 | 
					 | 
				
			||||||
    rewrite comm. apply H2. }
 | 
					 | 
				
			||||||
  intro; apply path_prod; apply set_path2. 
 | 
					 | 
				
			||||||
  all: intro; apply set_path2.  
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Lemma eq_subset (X Y : FSet A) :
 | 
					 | 
				
			||||||
  X = Y <~> (subset Y X * subset X Y).
 | 
					 | 
				
			||||||
Proof.
 | 
					 | 
				
			||||||
  transitivity ((U Y X = X) * (U X Y = Y)).
 | 
					 | 
				
			||||||
  apply eq_subset'.
 | 
					 | 
				
			||||||
  symmetry.
 | 
					 | 
				
			||||||
  eapply equiv_functor_prod'; apply subset_union_equiv.
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Theorem fset_ext (X Y : FSet A) :
 | 
					 | 
				
			||||||
  X = Y <~> (forall (a : A), isIn a X = isIn a Y).
 | 
					 | 
				
			||||||
Proof.
 | 
					 | 
				
			||||||
  refine (@equiv_compose' _ _ _ _ _) ; [ | apply eq_subset ].
 | 
					 | 
				
			||||||
  refine (@equiv_compose' _ ((forall a, isIn a Y -> isIn a X)
 | 
					 | 
				
			||||||
                             *(forall a, isIn a X -> isIn a Y)) _ _ _).
 | 
					 | 
				
			||||||
  - apply equiv_iff_hprop_uncurried.
 | 
					 | 
				
			||||||
    split.
 | 
					    split.
 | 
				
			||||||
    * intros [H1 H2 a].
 | 
					    - apply subset_union.
 | 
				
			||||||
      specialize (H1 a) ; specialize (H2 a).
 | 
					    - intro HXY.
 | 
				
			||||||
      apply path_iff_hprop.
 | 
					      rewrite <- HXY.
 | 
				
			||||||
      apply H2.
 | 
					      apply subset_union_l.
 | 
				
			||||||
      apply H1.
 | 
					  Defined.
 | 
				
			||||||
    * intros H1.
 | 
					
 | 
				
			||||||
      split ; intro a ; intro H2.
 | 
					  Lemma subset_isIn (X Y : FSet A) :
 | 
				
			||||||
 | 
					    (forall (a : A), isIn a X -> isIn a Y)
 | 
				
			||||||
 | 
					      <~> (subset X Y).
 | 
				
			||||||
 | 
					  Proof.
 | 
				
			||||||
 | 
					    eapply equiv_iff_hprop_uncurried.
 | 
				
			||||||
 | 
					    split.
 | 
				
			||||||
 | 
					    - hinduction X ;
 | 
				
			||||||
 | 
					        try (intros; repeat (apply path_forall; intro); apply equiv_hprop_allpath ; apply _).
 | 
				
			||||||
 | 
					      + intros ; reflexivity.
 | 
				
			||||||
 | 
					      + intros a f.
 | 
				
			||||||
 | 
					        apply f.
 | 
				
			||||||
 | 
					        apply tr ; reflexivity.
 | 
				
			||||||
 | 
					      + intros X1 X2 H1 H2 f.
 | 
				
			||||||
 | 
					        enough (subset X1 Y).
 | 
				
			||||||
 | 
					        enough (subset X2 Y).
 | 
				
			||||||
 | 
					        { split. apply X. apply X0. }
 | 
				
			||||||
 | 
					        * apply H2.
 | 
				
			||||||
 | 
					          intros a Ha.
 | 
				
			||||||
 | 
					          apply f.
 | 
				
			||||||
 | 
					          apply tr.
 | 
				
			||||||
 | 
					          right.
 | 
				
			||||||
 | 
					          apply Ha.
 | 
				
			||||||
 | 
					        * apply H1.
 | 
				
			||||||
 | 
					          intros a Ha.
 | 
				
			||||||
 | 
					          apply f.
 | 
				
			||||||
 | 
					          apply tr.
 | 
				
			||||||
 | 
					          left.
 | 
				
			||||||
 | 
					          apply Ha.
 | 
				
			||||||
 | 
					    - hinduction X ;
 | 
				
			||||||
 | 
					        try (intros; repeat (apply path_forall; intro); apply equiv_hprop_allpath ; apply _).
 | 
				
			||||||
 | 
					      + intros. contradiction.
 | 
				
			||||||
 | 
					      + intros b f a.
 | 
				
			||||||
 | 
					        simple refine (Trunc_ind _ _) ; cbn.
 | 
				
			||||||
 | 
					        intro p.
 | 
				
			||||||
 | 
					        rewrite p^ in f.
 | 
				
			||||||
 | 
					        apply f.
 | 
				
			||||||
 | 
					      + intros X1 X2 IH1 IH2 [H1 H2] a.
 | 
				
			||||||
 | 
					        simple refine (Trunc_ind _ _) ; cbn.
 | 
				
			||||||
 | 
					        intros [C1 | C2].
 | 
				
			||||||
 | 
					        ++ apply (IH1 H1 a C1).
 | 
				
			||||||
 | 
					        ++ apply (IH2 H2 a C2).
 | 
				
			||||||
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  (** ** Extensionality proof *)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Lemma eq_subset' (X Y : FSet A) : X = Y <~> (U Y X = X) * (U X Y = Y).
 | 
				
			||||||
 | 
					  Proof.
 | 
				
			||||||
 | 
					    unshelve eapply BuildEquiv.
 | 
				
			||||||
 | 
					    { intro H'. rewrite H'. split; apply union_idem. }
 | 
				
			||||||
 | 
					    unshelve esplit.
 | 
				
			||||||
 | 
					    { intros [H1 H2]. etransitivity. apply H1^.
 | 
				
			||||||
 | 
					      rewrite comm. apply H2. }
 | 
				
			||||||
 | 
					    intro; apply path_prod; apply set_path2. 
 | 
				
			||||||
 | 
					    all: intro; apply set_path2.  
 | 
				
			||||||
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Lemma eq_subset (X Y : FSet A) :
 | 
				
			||||||
 | 
					    X = Y <~> (subset Y X * subset X Y).
 | 
				
			||||||
 | 
					  Proof.
 | 
				
			||||||
 | 
					    transitivity ((U Y X = X) * (U X Y = Y)).
 | 
				
			||||||
 | 
					    apply eq_subset'.
 | 
				
			||||||
 | 
					    symmetry.
 | 
				
			||||||
 | 
					    eapply equiv_functor_prod'; apply subset_union_equiv.
 | 
				
			||||||
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Theorem fset_ext (X Y : FSet A) :
 | 
				
			||||||
 | 
					    X = Y <~> (forall (a : A), isIn a X = isIn a Y).
 | 
				
			||||||
 | 
					  Proof.
 | 
				
			||||||
 | 
					    refine (@equiv_compose' _ _ _ _ _) ; [ | apply eq_subset ].
 | 
				
			||||||
 | 
					    refine (@equiv_compose' _ ((forall a, isIn a Y -> isIn a X)
 | 
				
			||||||
 | 
					                               *(forall a, isIn a X -> isIn a Y)) _ _ _).
 | 
				
			||||||
 | 
					    - apply equiv_iff_hprop_uncurried.
 | 
				
			||||||
 | 
					      split.
 | 
				
			||||||
 | 
					      * intros [H1 H2 a].
 | 
				
			||||||
 | 
					        specialize (H1 a) ; specialize (H2 a).
 | 
				
			||||||
 | 
					        apply path_iff_hprop.
 | 
				
			||||||
 | 
					        apply H2.
 | 
				
			||||||
 | 
					        apply H1.
 | 
				
			||||||
 | 
					      * intros H1.
 | 
				
			||||||
 | 
					        split ; intro a ; intro H2.
 | 
				
			||||||
      + rewrite (H1 a).
 | 
					      + rewrite (H1 a).
 | 
				
			||||||
        apply H2.
 | 
					        apply H2.
 | 
				
			||||||
      + rewrite <- (H1 a).
 | 
					      + rewrite <- (H1 a).
 | 
				
			||||||
        apply H2.
 | 
					        apply H2.
 | 
				
			||||||
  - eapply equiv_functor_prod' ;
 | 
					    - eapply equiv_functor_prod' ;
 | 
				
			||||||
    apply equiv_iff_hprop_uncurried ;
 | 
					        apply equiv_iff_hprop_uncurried ;
 | 
				
			||||||
    split ; apply subset_isIn.
 | 
					        split ; apply subset_isIn.
 | 
				
			||||||
Defined.
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
End ext.
 | 
					End ext.
 | 
				
			||||||
 
 | 
				
			|||||||
							
								
								
									
										69
									
								
								FiniteSets/fsets/isomorphism.v
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										69
									
								
								FiniteSets/fsets/isomorphism.v
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,69 @@
 | 
				
			|||||||
 | 
					(* The representations [FSet A] and [FSetC A] are isomorphic for every A *)
 | 
				
			||||||
 | 
					Require Import HoTT HitTactics.
 | 
				
			||||||
 | 
					From representations Require Import cons_repr definition.
 | 
				
			||||||
 | 
					From fsets Require Import operations_cons_repr properties_cons_repr.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Section Iso.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Context {A : Type}.
 | 
				
			||||||
 | 
					  Context `{Univalence}.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Definition FSetC_to_FSet: FSetC A -> FSet A.
 | 
				
			||||||
 | 
					  Proof.
 | 
				
			||||||
 | 
					    hrecursion.
 | 
				
			||||||
 | 
					    - apply E.
 | 
				
			||||||
 | 
					    - intros a x. apply (U (L a) x).
 | 
				
			||||||
 | 
					    - intros. cbn.  
 | 
				
			||||||
 | 
					      etransitivity. apply assoc.
 | 
				
			||||||
 | 
					      apply (ap (fun y => U y x)).
 | 
				
			||||||
 | 
					      apply idem.
 | 
				
			||||||
 | 
					    - intros. cbn.
 | 
				
			||||||
 | 
					      etransitivity. apply assoc.
 | 
				
			||||||
 | 
					      etransitivity. refine (ap (fun y => U y x) _ ).
 | 
				
			||||||
 | 
					      apply FSet.comm.
 | 
				
			||||||
 | 
					      symmetry. 
 | 
				
			||||||
 | 
					      apply assoc.
 | 
				
			||||||
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Definition FSet_to_FSetC: FSet A -> FSetC A :=
 | 
				
			||||||
 | 
					    FSet_rec A (FSetC A) (FSetC.trunc A) Nil singleton append append_assoc 
 | 
				
			||||||
 | 
					             append_comm append_nl append_nr singleton_idem.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Lemma append_union: forall (x y: FSetC A), 
 | 
				
			||||||
 | 
					      FSetC_to_FSet (append x y) = U (FSetC_to_FSet x) (FSetC_to_FSet y).
 | 
				
			||||||
 | 
					  Proof.
 | 
				
			||||||
 | 
					    intros x. 
 | 
				
			||||||
 | 
					    hrecursion x; try (intros; apply path_forall; intro; apply set_path2).
 | 
				
			||||||
 | 
					    - intros. symmetry. apply nl.
 | 
				
			||||||
 | 
					    - intros a x HR y. rewrite HR. apply assoc.
 | 
				
			||||||
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Lemma repr_iso_id_l: forall (x: FSet A), FSetC_to_FSet (FSet_to_FSetC x) = x.
 | 
				
			||||||
 | 
					  Proof.
 | 
				
			||||||
 | 
					    hinduction; try (intros; apply set_path2).
 | 
				
			||||||
 | 
					    - reflexivity.
 | 
				
			||||||
 | 
					    - intro. apply nr.
 | 
				
			||||||
 | 
					    - intros x y p q. rewrite append_union, p, q. reflexivity.
 | 
				
			||||||
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Lemma repr_iso_id_r: forall (x: FSetC A), FSet_to_FSetC (FSetC_to_FSet x) = x.
 | 
				
			||||||
 | 
					  Proof.
 | 
				
			||||||
 | 
					    hinduction; try (intros; apply set_path2).
 | 
				
			||||||
 | 
					    - reflexivity.
 | 
				
			||||||
 | 
					    - intros a x HR. rewrite HR. reflexivity.
 | 
				
			||||||
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Theorem repr_iso: FSet A <~> FSetC A.
 | 
				
			||||||
 | 
					  Proof.
 | 
				
			||||||
 | 
					    simple refine (@BuildEquiv (FSet A) (FSetC A) FSet_to_FSetC _ ).
 | 
				
			||||||
 | 
					    apply isequiv_biinv.
 | 
				
			||||||
 | 
					    unfold BiInv. split.
 | 
				
			||||||
 | 
					    exists FSetC_to_FSet.
 | 
				
			||||||
 | 
					    unfold Sect. apply repr_iso_id_l.
 | 
				
			||||||
 | 
					    exists FSetC_to_FSet.
 | 
				
			||||||
 | 
					    unfold Sect. apply repr_iso_id_r.
 | 
				
			||||||
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					End Iso.
 | 
				
			||||||
							
								
								
									
										40
									
								
								FiniteSets/fsets/length.v
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										40
									
								
								FiniteSets/fsets/length.v
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,40 @@
 | 
				
			|||||||
 | 
					(* The length function for finite sets *)
 | 
				
			||||||
 | 
					Require Import HoTT HitTactics.
 | 
				
			||||||
 | 
					From representations Require Import cons_repr definition.
 | 
				
			||||||
 | 
					From fsets Require Import operations_decidable isomorphism properties_decidable.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Section Length.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Context {A : Type}.
 | 
				
			||||||
 | 
					  Context {A_deceq : DecidablePaths A}.
 | 
				
			||||||
 | 
					  Context `{Univalence}.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Opaque isIn_b.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Definition length (x: FSetC A) : nat.
 | 
				
			||||||
 | 
					  Proof.
 | 
				
			||||||
 | 
					    simple refine (FSetC_ind A _ _ _ _ _ _ x ); simpl.
 | 
				
			||||||
 | 
					    - exact 0.
 | 
				
			||||||
 | 
					    - intros a y n. 
 | 
				
			||||||
 | 
					      pose (y' := FSetC_to_FSet y).
 | 
				
			||||||
 | 
					      exact (if isIn_b a y' then n else (S n)).
 | 
				
			||||||
 | 
					    - intros. rewrite transport_const. cbn.
 | 
				
			||||||
 | 
					      simplify_isIn. simpl. reflexivity.
 | 
				
			||||||
 | 
					    - intros. rewrite transport_const. cbn.
 | 
				
			||||||
 | 
					      simplify_isIn.
 | 
				
			||||||
 | 
					      destruct (dec (a = b)) as [Hab | Hab].
 | 
				
			||||||
 | 
					      + rewrite Hab. simplify_isIn. simpl. reflexivity.
 | 
				
			||||||
 | 
					      + rewrite ?L_isIn_b_false; auto. simpl. 
 | 
				
			||||||
 | 
					        destruct (isIn_b a (FSetC_to_FSet x0)), (isIn_b b (FSetC_to_FSet x0)) ; reflexivity.
 | 
				
			||||||
 | 
					        intro p. contradiction (Hab p^).
 | 
				
			||||||
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Definition length_FSet (x: FSet A) := length (FSet_to_FSetC x).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Lemma length_singleton: forall (a: A), length_FSet (L a) = 1.
 | 
				
			||||||
 | 
					  Proof. 
 | 
				
			||||||
 | 
					    intro a.
 | 
				
			||||||
 | 
					    cbn. reflexivity. 
 | 
				
			||||||
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					End Length.
 | 
				
			||||||
							
								
								
									
										19
									
								
								FiniteSets/fsets/operations_cons_repr.v
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										19
									
								
								FiniteSets/fsets/operations_cons_repr.v
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,19 @@
 | 
				
			|||||||
 | 
					(* Operations on [FSetC A] *)
 | 
				
			||||||
 | 
					Require Import HoTT HitTactics.
 | 
				
			||||||
 | 
					Require Import representations.cons_repr.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Section operations.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Context {A : Type}.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Definition append  (x y: FSetC A) : FSetC A.
 | 
				
			||||||
 | 
					    hinduction x.
 | 
				
			||||||
 | 
					    - apply y.
 | 
				
			||||||
 | 
					    - apply Cns.
 | 
				
			||||||
 | 
					    - apply dupl.
 | 
				
			||||||
 | 
					    - apply comm.
 | 
				
			||||||
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Definition singleton (a:A) : FSetC A := a;;∅.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					End operations.
 | 
				
			||||||
							
								
								
									
										75
									
								
								FiniteSets/fsets/properties_cons_repr.v
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										75
									
								
								FiniteSets/fsets/properties_cons_repr.v
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,75 @@
 | 
				
			|||||||
 | 
					(* Properties of the operations on [FSetC A] *)
 | 
				
			||||||
 | 
					Require Import HoTT HitTactics.
 | 
				
			||||||
 | 
					Require Import representations.cons_repr.
 | 
				
			||||||
 | 
					From fsets Require Import operations_cons_repr.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Section properties.
 | 
				
			||||||
 | 
					  Context {A : Type}.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Lemma append_nl: 
 | 
				
			||||||
 | 
					    forall (x: FSetC A), append ∅ x = x. 
 | 
				
			||||||
 | 
					  Proof.
 | 
				
			||||||
 | 
					    intro. reflexivity.
 | 
				
			||||||
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Lemma append_nr: 
 | 
				
			||||||
 | 
					    forall (x: FSetC A), append x ∅ = x.
 | 
				
			||||||
 | 
					  Proof.
 | 
				
			||||||
 | 
					    hinduction; try (intros; apply set_path2).
 | 
				
			||||||
 | 
					    -  reflexivity.
 | 
				
			||||||
 | 
					    -  intros. apply (ap (fun y => a ;; y) X).
 | 
				
			||||||
 | 
					  Defined.
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					  Lemma append_assoc {H: Funext}:  
 | 
				
			||||||
 | 
					    forall (x y z: FSetC A), append x (append y z) = append (append x y) z.
 | 
				
			||||||
 | 
					  Proof.
 | 
				
			||||||
 | 
					    intro x; hinduction x; try (intros; apply set_path2).
 | 
				
			||||||
 | 
					    - reflexivity.
 | 
				
			||||||
 | 
					    - intros a x HR y z. 
 | 
				
			||||||
 | 
					      specialize (HR y z).
 | 
				
			||||||
 | 
					      apply (ap (fun y => a ;; y) HR). 
 | 
				
			||||||
 | 
					    - intros. apply path_forall. 
 | 
				
			||||||
 | 
					      intro. apply path_forall. 
 | 
				
			||||||
 | 
					      intro. apply set_path2.
 | 
				
			||||||
 | 
					    - intros. apply path_forall.
 | 
				
			||||||
 | 
					      intro. apply path_forall. 
 | 
				
			||||||
 | 
					      intro. apply set_path2.
 | 
				
			||||||
 | 
					  Defined.
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					  Lemma append_singleton: forall (a: A) (x: FSetC A), 
 | 
				
			||||||
 | 
					      a ;; x = append x (a ;; ∅).
 | 
				
			||||||
 | 
					  Proof.
 | 
				
			||||||
 | 
					    intro a. hinduction; try (intros; apply set_path2).
 | 
				
			||||||
 | 
					    - reflexivity.
 | 
				
			||||||
 | 
					    - intros b x HR. refine (_ @ _).
 | 
				
			||||||
 | 
					      + apply comm.
 | 
				
			||||||
 | 
					      + apply (ap (fun y => b ;; y) HR).
 | 
				
			||||||
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Lemma append_comm {H: Funext}: 
 | 
				
			||||||
 | 
					    forall (x1 x2: FSetC A), append x1 x2 = append x2 x1.
 | 
				
			||||||
 | 
					  Proof.
 | 
				
			||||||
 | 
					    intro x1. 
 | 
				
			||||||
 | 
					    hinduction x1;  try (intros; apply set_path2).
 | 
				
			||||||
 | 
					    - intros. symmetry. apply append_nr. 
 | 
				
			||||||
 | 
					    - intros a x1 HR x2.
 | 
				
			||||||
 | 
					      etransitivity.
 | 
				
			||||||
 | 
					      apply (ap (fun y => a;;y) (HR x2)).  
 | 
				
			||||||
 | 
					      transitivity  (append (append x2 x1) (a;;∅)).
 | 
				
			||||||
 | 
					      + apply append_singleton. 
 | 
				
			||||||
 | 
					      + etransitivity.
 | 
				
			||||||
 | 
					    	* symmetry. apply append_assoc.
 | 
				
			||||||
 | 
					    	* simple refine (ap (fun y => append x2 y) (append_singleton _ _)^).
 | 
				
			||||||
 | 
					    - intros. apply path_forall.
 | 
				
			||||||
 | 
					      intro. apply set_path2.
 | 
				
			||||||
 | 
					    - intros. apply path_forall.
 | 
				
			||||||
 | 
					      intro. apply set_path2.  
 | 
				
			||||||
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Lemma singleton_idem: forall (a: A), 
 | 
				
			||||||
 | 
					      append (singleton a) (singleton a) = singleton a.
 | 
				
			||||||
 | 
					  Proof.
 | 
				
			||||||
 | 
					    unfold singleton. intro. cbn. apply dupl.
 | 
				
			||||||
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					End properties.
 | 
				
			||||||
@@ -1,5 +1,7 @@
 | 
				
			|||||||
 | 
					(* Implementation of [FSet A] using lists *)
 | 
				
			||||||
Require Import HoTT HitTactics.
 | 
					Require Import HoTT HitTactics.
 | 
				
			||||||
Require Import representations.cons_repr FSets.
 | 
					Require Import representations.cons_repr FSets.
 | 
				
			||||||
 | 
					From fsets Require Import operations_cons_repr isomorphism length.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Section Operations.
 | 
					Section Operations.
 | 
				
			||||||
  Variable A : Type.
 | 
					  Variable A : Type.
 | 
				
			||||||
@@ -80,7 +82,7 @@ Section ListToSet.
 | 
				
			|||||||
  Defined.
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  Lemma append_FSetCappend (l1 l2 : list A) :
 | 
					  Lemma append_FSetCappend (l1 l2 : list A) :
 | 
				
			||||||
    list_to_setC (append l1 l2) = FSetC.append (list_to_setC l1) (list_to_setC l2).
 | 
					    list_to_setC (append l1 l2) = operations_cons_repr.append (list_to_setC l1) (list_to_setC l2).
 | 
				
			||||||
  Proof.
 | 
					  Proof.
 | 
				
			||||||
    induction l1 ; simpl in *.
 | 
					    induction l1 ; simpl in *.
 | 
				
			||||||
    - reflexivity.
 | 
					    - reflexivity.
 | 
				
			||||||
@@ -117,7 +119,7 @@ Section ListToSet.
 | 
				
			|||||||
  Defined.
 | 
					  Defined.
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  Lemma length_sizeC (l : list A) :
 | 
					  Lemma length_sizeC (l : list A) :
 | 
				
			||||||
    cardinality l = cons_repr.length (list_to_setC l).
 | 
					    cardinality l = length (list_to_setC l).
 | 
				
			||||||
  Proof.
 | 
					  Proof.
 | 
				
			||||||
    induction l.
 | 
					    induction l.
 | 
				
			||||||
    - cbn.
 | 
					    - cbn.
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -5,187 +5,187 @@ Require Import HoTT.
 | 
				
			|||||||
Require Import HitTactics.
 | 
					Require Import HitTactics.
 | 
				
			||||||
Module Export FSet.
 | 
					Module Export FSet.
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
Section FSet.
 | 
					  Section FSet.
 | 
				
			||||||
Variable A : Type.
 | 
					    Variable A : Type.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Private Inductive FSet : Type :=
 | 
					    Private Inductive FSet : Type :=
 | 
				
			||||||
  | E : FSet
 | 
					    | E : FSet
 | 
				
			||||||
  | L : A -> FSet
 | 
					    | L : A -> FSet
 | 
				
			||||||
  | U : FSet -> FSet -> FSet.
 | 
					    | U : FSet -> FSet -> FSet.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Notation "{| x |}" :=  (L x).
 | 
					    Notation "{| x |}" :=  (L x).
 | 
				
			||||||
Infix "∪" := U (at level 8, right associativity).
 | 
					    Infix "∪" := U (at level 8, right associativity).
 | 
				
			||||||
Notation "∅" := E.
 | 
					    Notation "∅" := E.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom assoc : forall (x y z : FSet ),
 | 
					    Axiom assoc : forall (x y z : FSet ),
 | 
				
			||||||
  x ∪ (y ∪ z) = (x ∪ y) ∪ z.
 | 
					        x ∪ (y ∪ z) = (x ∪ y) ∪ z.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom comm : forall (x y : FSet),
 | 
					    Axiom comm : forall (x y : FSet),
 | 
				
			||||||
  x ∪ y = y ∪ x.
 | 
					        x ∪ y = y ∪ x.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom nl : forall (x : FSet),
 | 
					    Axiom nl : forall (x : FSet),
 | 
				
			||||||
  ∅ ∪ x = x.
 | 
					        ∅ ∪ x = x.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom nr : forall (x : FSet),
 | 
					    Axiom nr : forall (x : FSet),
 | 
				
			||||||
  x ∪ ∅ = x.
 | 
					        x ∪ ∅ = x.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom idem : forall (x : A),
 | 
					    Axiom idem : forall (x : A),
 | 
				
			||||||
  {| x |} ∪ {|x|} = {|x|}.
 | 
					        {| x |} ∪ {|x|} = {|x|}.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
End FSet.
 | 
					  End FSet.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Arguments E {_}.
 | 
					  Arguments E {_}.
 | 
				
			||||||
Arguments U {_} _ _.
 | 
					  Arguments U {_} _ _.
 | 
				
			||||||
Arguments L {_} _.
 | 
					  Arguments L {_} _.
 | 
				
			||||||
Arguments assoc {_} _ _ _.
 | 
					  Arguments assoc {_} _ _ _.
 | 
				
			||||||
Arguments comm {_} _ _.
 | 
					  Arguments comm {_} _ _.
 | 
				
			||||||
Arguments nl {_} _.
 | 
					  Arguments nl {_} _.
 | 
				
			||||||
Arguments nr {_} _.
 | 
					  Arguments nr {_} _.
 | 
				
			||||||
Arguments idem {_} _.
 | 
					  Arguments idem {_} _.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Section FSet_induction.
 | 
					  Section FSet_induction.
 | 
				
			||||||
Variable A: Type.
 | 
					    Variable A: Type.
 | 
				
			||||||
Variable  (P : FSet A -> Type).
 | 
					    Variable  (P : FSet A -> Type).
 | 
				
			||||||
Variable  (eP : P E).
 | 
					    Variable  (eP : P E).
 | 
				
			||||||
Variable  (lP : forall a: A, P (L a)).
 | 
					    Variable  (lP : forall a: A, P (L a)).
 | 
				
			||||||
Variable  (uP : forall (x y: FSet A), P x -> P y -> P (U x y)).
 | 
					    Variable  (uP : forall (x y: FSet A), P x -> P y -> P (U x y)).
 | 
				
			||||||
Variable  (assocP : forall (x y z : FSet A) 
 | 
					    Variable  (assocP : forall (x y z : FSet A) 
 | 
				
			||||||
                   (px: P x) (py: P y) (pz: P z),
 | 
					                               (px: P x) (py: P y) (pz: P z),
 | 
				
			||||||
  assoc x y z #
 | 
					                  assoc x y z #
 | 
				
			||||||
   (uP      x    (U y z)          px        (uP y z py pz)) 
 | 
					                        (uP      x    (U y z)          px        (uP y z py pz)) 
 | 
				
			||||||
  = 
 | 
					                  = 
 | 
				
			||||||
   (uP   (U x y)    z       (uP x y px py)          pz)).
 | 
					                  (uP   (U x y)    z       (uP x y px py)          pz)).
 | 
				
			||||||
Variable  (commP : forall (x y: FSet A) (px: P x) (py: P y),
 | 
					    Variable  (commP : forall (x y: FSet A) (px: P x) (py: P y),
 | 
				
			||||||
  comm x y #
 | 
					                  comm x y #
 | 
				
			||||||
  uP x y px py = uP y x py px).
 | 
					                       uP x y px py = uP y x py px).
 | 
				
			||||||
Variable  (nlP : forall (x : FSet A) (px: P x), 
 | 
					    Variable  (nlP : forall (x : FSet A) (px: P x), 
 | 
				
			||||||
  nl x # uP E x eP px = px).
 | 
					                  nl x # uP E x eP px = px).
 | 
				
			||||||
Variable  (nrP : forall (x : FSet A) (px: P x), 
 | 
					    Variable  (nrP : forall (x : FSet A) (px: P x), 
 | 
				
			||||||
  nr x # uP x E px eP = px).
 | 
					                  nr x # uP x E px eP = px).
 | 
				
			||||||
Variable  (idemP : forall (x : A), 
 | 
					    Variable  (idemP : forall (x : A), 
 | 
				
			||||||
  idem x # uP (L x) (L x) (lP x) (lP x) = lP x).
 | 
					                  idem x # uP (L x) (L x) (lP x) (lP x) = lP x).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
(* Induction principle *)
 | 
					    (* Induction principle *)
 | 
				
			||||||
Fixpoint FSet_ind
 | 
					    Fixpoint FSet_ind
 | 
				
			||||||
  (x : FSet A)
 | 
					             (x : FSet A)
 | 
				
			||||||
  {struct x}
 | 
					             {struct x}
 | 
				
			||||||
  : P x
 | 
					      : P x
 | 
				
			||||||
  := (match x return _ -> _ -> _ -> _ -> _ -> P x with
 | 
					      := (match x return _ -> _ -> _ -> _ -> _ -> P x with
 | 
				
			||||||
        | E => fun _ => fun _ => fun _ => fun _ => fun _ => eP
 | 
					          | E => fun _ => fun _ => fun _ => fun _ => fun _ => eP
 | 
				
			||||||
        | L a => fun _ => fun _ => fun _ => fun _ => fun _ => lP a
 | 
					          | L a => fun _ => fun _ => fun _ => fun _ => fun _ => lP a
 | 
				
			||||||
        | U y z => fun _ => fun _ => fun _ => fun _ => fun _ => uP y z
 | 
					          | U y z => fun _ => fun _ => fun _ => fun _ => fun _ => uP y z
 | 
				
			||||||
           (FSet_ind y)
 | 
					                                                                     (FSet_ind y)
 | 
				
			||||||
           (FSet_ind z)
 | 
					                                                                     (FSet_ind z)
 | 
				
			||||||
      end) assocP commP nlP nrP idemP.
 | 
					          end) assocP commP nlP nrP idemP.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom FSet_ind_beta_assoc : forall (x y z : FSet A),
 | 
					    Axiom FSet_ind_beta_assoc : forall (x y z : FSet A),
 | 
				
			||||||
  apD FSet_ind (assoc x y z) =
 | 
					        apD FSet_ind (assoc x y z) =
 | 
				
			||||||
  (assocP x y z (FSet_ind x)  (FSet_ind y) (FSet_ind z)).
 | 
					        (assocP x y z (FSet_ind x)  (FSet_ind y) (FSet_ind z)).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom FSet_ind_beta_comm : forall (x y : FSet A),
 | 
					    Axiom FSet_ind_beta_comm : forall (x y : FSet A),
 | 
				
			||||||
  apD FSet_ind (comm x y) = (commP x y (FSet_ind x) (FSet_ind y)).
 | 
					        apD FSet_ind (comm x y) = (commP x y (FSet_ind x) (FSet_ind y)).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom FSet_ind_beta_nl : forall (x : FSet A),
 | 
					    Axiom FSet_ind_beta_nl : forall (x : FSet A),
 | 
				
			||||||
  apD FSet_ind (nl x) = (nlP x (FSet_ind x)).
 | 
					        apD FSet_ind (nl x) = (nlP x (FSet_ind x)).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom FSet_ind_beta_nr : forall (x : FSet A),
 | 
					    Axiom FSet_ind_beta_nr : forall (x : FSet A),
 | 
				
			||||||
  apD FSet_ind (nr x) = (nrP x (FSet_ind x)).
 | 
					        apD FSet_ind (nr x) = (nrP x (FSet_ind x)).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom FSet_ind_beta_idem : forall (x : A), apD FSet_ind (idem x) = idemP x.
 | 
					    Axiom FSet_ind_beta_idem : forall (x : A), apD FSet_ind (idem x) = idemP x.
 | 
				
			||||||
End FSet_induction.
 | 
					  End FSet_induction.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Section FSet_recursion.
 | 
					  Section FSet_recursion.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Variable A : Type.
 | 
					    Variable A : Type.
 | 
				
			||||||
Variable P : Type.
 | 
					    Variable P : Type.
 | 
				
			||||||
Variable e : P.
 | 
					    Variable e : P.
 | 
				
			||||||
Variable l : A -> P.
 | 
					    Variable l : A -> P.
 | 
				
			||||||
Variable u : P -> P -> P.
 | 
					    Variable u : P -> P -> P.
 | 
				
			||||||
Variable assocP : forall (x y z : P), u x (u y z) = u (u x y) z.
 | 
					    Variable assocP : forall (x y z : P), u x (u y z) = u (u x y) z.
 | 
				
			||||||
Variable commP : forall (x y : P), u x y = u y x.
 | 
					    Variable commP : forall (x y : P), u x y = u y x.
 | 
				
			||||||
Variable nlP : forall (x : P), u e x = x.
 | 
					    Variable nlP : forall (x : P), u e x = x.
 | 
				
			||||||
Variable nrP : forall (x : P), u x e = x.
 | 
					    Variable nrP : forall (x : P), u x e = x.
 | 
				
			||||||
Variable idemP : forall (x : A), u (l x) (l x) = l x.
 | 
					    Variable idemP : forall (x : A), u (l x) (l x) = l x.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Definition FSet_rec : FSet A -> P.
 | 
					    Definition FSet_rec : FSet A -> P.
 | 
				
			||||||
Proof.
 | 
					    Proof.
 | 
				
			||||||
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _) ; try (intros ; simple refine ((transport_const _ _) @ _)) ; cbn.
 | 
					      simple refine (FSet_ind A _ _ _ _ _ _ _ _ _) ; try (intros ; simple refine ((transport_const _ _) @ _)) ; cbn.
 | 
				
			||||||
- apply e.
 | 
					      - apply e.
 | 
				
			||||||
- apply l.
 | 
					      - apply l.
 | 
				
			||||||
- intros x y ; apply u.
 | 
					      - intros x y ; apply u.
 | 
				
			||||||
- apply assocP.
 | 
					      - apply assocP.
 | 
				
			||||||
- apply commP.
 | 
					      - apply commP.
 | 
				
			||||||
- apply nlP.
 | 
					      - apply nlP.
 | 
				
			||||||
- apply nrP.
 | 
					      - apply nrP.
 | 
				
			||||||
- apply idemP.
 | 
					      - apply idemP.
 | 
				
			||||||
Defined.
 | 
					    Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Definition FSet_rec_beta_assoc : forall (x y z : FSet A),
 | 
					    Definition FSet_rec_beta_assoc : forall (x y z : FSet A),
 | 
				
			||||||
  ap FSet_rec (assoc x y z) 
 | 
					        ap FSet_rec (assoc x y z) 
 | 
				
			||||||
  =
 | 
					        =
 | 
				
			||||||
  assocP (FSet_rec x) (FSet_rec y) (FSet_rec z).
 | 
					        assocP (FSet_rec x) (FSet_rec y) (FSet_rec z).
 | 
				
			||||||
Proof.
 | 
					    Proof.
 | 
				
			||||||
intros.
 | 
					      intros.
 | 
				
			||||||
unfold FSet_rec.
 | 
					      unfold FSet_rec.
 | 
				
			||||||
eapply (cancelL (transport_const (assoc x y z) _)).
 | 
					      eapply (cancelL (transport_const (assoc x y z) _)).
 | 
				
			||||||
simple refine ((apD_const _ _)^ @ _).
 | 
					      simple refine ((apD_const _ _)^ @ _).
 | 
				
			||||||
apply FSet_ind_beta_assoc.
 | 
					      apply FSet_ind_beta_assoc.
 | 
				
			||||||
Defined.
 | 
					    Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Definition FSet_rec_beta_comm : forall (x y : FSet A),
 | 
					    Definition FSet_rec_beta_comm : forall (x y : FSet A),
 | 
				
			||||||
  ap FSet_rec (comm x y) 
 | 
					        ap FSet_rec (comm x y) 
 | 
				
			||||||
  =
 | 
					        =
 | 
				
			||||||
  commP (FSet_rec x) (FSet_rec y).
 | 
					        commP (FSet_rec x) (FSet_rec y).
 | 
				
			||||||
Proof.
 | 
					    Proof.
 | 
				
			||||||
intros.
 | 
					      intros.
 | 
				
			||||||
unfold FSet_rec.
 | 
					      unfold FSet_rec.
 | 
				
			||||||
eapply (cancelL (transport_const (comm x y) _)).
 | 
					      eapply (cancelL (transport_const (comm x y) _)).
 | 
				
			||||||
simple refine ((apD_const _ _)^ @ _).
 | 
					      simple refine ((apD_const _ _)^ @ _).
 | 
				
			||||||
apply FSet_ind_beta_comm.
 | 
					      apply FSet_ind_beta_comm.
 | 
				
			||||||
Defined.
 | 
					    Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Definition FSet_rec_beta_nl : forall (x : FSet A),
 | 
					    Definition FSet_rec_beta_nl : forall (x : FSet A),
 | 
				
			||||||
  ap FSet_rec (nl x) 
 | 
					        ap FSet_rec (nl x) 
 | 
				
			||||||
  =
 | 
					        =
 | 
				
			||||||
  nlP (FSet_rec x).
 | 
					        nlP (FSet_rec x).
 | 
				
			||||||
Proof.
 | 
					    Proof.
 | 
				
			||||||
intros.
 | 
					      intros.
 | 
				
			||||||
unfold FSet_rec.
 | 
					      unfold FSet_rec.
 | 
				
			||||||
eapply (cancelL (transport_const (nl x) _)).
 | 
					      eapply (cancelL (transport_const (nl x) _)).
 | 
				
			||||||
simple refine ((apD_const _ _)^ @ _).
 | 
					      simple refine ((apD_const _ _)^ @ _).
 | 
				
			||||||
apply FSet_ind_beta_nl.
 | 
					      apply FSet_ind_beta_nl.
 | 
				
			||||||
Defined.
 | 
					    Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Definition FSet_rec_beta_nr : forall (x : FSet A),
 | 
					    Definition FSet_rec_beta_nr : forall (x : FSet A),
 | 
				
			||||||
  ap FSet_rec (nr x) 
 | 
					        ap FSet_rec (nr x) 
 | 
				
			||||||
  =
 | 
					        =
 | 
				
			||||||
  nrP (FSet_rec x).
 | 
					        nrP (FSet_rec x).
 | 
				
			||||||
Proof.
 | 
					    Proof.
 | 
				
			||||||
intros.
 | 
					      intros.
 | 
				
			||||||
unfold FSet_rec.
 | 
					      unfold FSet_rec.
 | 
				
			||||||
eapply (cancelL (transport_const (nr x) _)).
 | 
					      eapply (cancelL (transport_const (nr x) _)).
 | 
				
			||||||
simple refine ((apD_const _ _)^ @ _).
 | 
					      simple refine ((apD_const _ _)^ @ _).
 | 
				
			||||||
apply FSet_ind_beta_nr.
 | 
					      apply FSet_ind_beta_nr.
 | 
				
			||||||
Defined.
 | 
					    Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Definition FSet_rec_beta_idem : forall (a : A),
 | 
					    Definition FSet_rec_beta_idem : forall (a : A),
 | 
				
			||||||
  ap FSet_rec (idem a) 
 | 
					        ap FSet_rec (idem a) 
 | 
				
			||||||
  =
 | 
					        =
 | 
				
			||||||
  idemP a.
 | 
					        idemP a.
 | 
				
			||||||
Proof.
 | 
					    Proof.
 | 
				
			||||||
intros.
 | 
					      intros.
 | 
				
			||||||
unfold FSet_rec.
 | 
					      unfold FSet_rec.
 | 
				
			||||||
eapply (cancelL (transport_const (idem a) _)).
 | 
					      eapply (cancelL (transport_const (idem a) _)).
 | 
				
			||||||
simple refine ((apD_const _ _)^ @ _).
 | 
					      simple refine ((apD_const _ _)^ @ _).
 | 
				
			||||||
apply FSet_ind_beta_idem.
 | 
					      apply FSet_ind_beta_idem.
 | 
				
			||||||
Defined.
 | 
					    Defined.
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
End FSet_recursion.
 | 
					  End FSet_recursion.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Instance FSet_recursion A : HitRecursion (FSet A) := {
 | 
					  Instance FSet_recursion A : HitRecursion (FSet A) := {
 | 
				
			||||||
  indTy := _; recTy := _; 
 | 
					                                                        indTy := _; recTy := _; 
 | 
				
			||||||
  H_inductor := FSet_ind A; H_recursor := FSet_rec A }.
 | 
					                                                        H_inductor := FSet_ind A; H_recursor := FSet_rec A }.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
End FSet.
 | 
					End FSet.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -194,104 +194,104 @@ Infix "∪" := U (at level 8, right associativity).
 | 
				
			|||||||
Notation "∅" := E.
 | 
					Notation "∅" := E.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Section set_sphere.
 | 
					Section set_sphere.
 | 
				
			||||||
From HoTT.HIT Require Import Circle.
 | 
					  From HoTT.HIT Require Import Circle.
 | 
				
			||||||
From HoTT Require Import UnivalenceAxiom.
 | 
					  From HoTT Require Import UnivalenceAxiom.
 | 
				
			||||||
Instance S1_recursion : HitRecursion S1 := {
 | 
					  Instance S1_recursion : HitRecursion S1 := {
 | 
				
			||||||
  indTy := _; recTy := _; 
 | 
					                                              indTy := _; recTy := _; 
 | 
				
			||||||
  H_inductor := S1_ind; H_recursor := S1_rec }.
 | 
					                                              H_inductor := S1_ind; H_recursor := S1_rec }.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Variable A : Type.
 | 
					  Variable A : Type.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Definition f (x : S1) : x = x.
 | 
					  Definition f (x : S1) : x = x.
 | 
				
			||||||
Proof.
 | 
					  Proof.
 | 
				
			||||||
hrecursion x.
 | 
					    hrecursion x.
 | 
				
			||||||
- exact loop.
 | 
					    - exact loop.
 | 
				
			||||||
- etransitivity. 
 | 
					    - etransitivity. 
 | 
				
			||||||
  eapply (@transport_paths_FlFr S1 S1 idmap idmap).
 | 
					      eapply (@transport_paths_FlFr S1 S1 idmap idmap).
 | 
				
			||||||
  hott_simpl.
 | 
					      hott_simpl.
 | 
				
			||||||
Defined.
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Definition S1op (x y : S1) : S1.
 | 
					  Definition S1op (x y : S1) : S1.
 | 
				
			||||||
Proof.
 | 
					  Proof.
 | 
				
			||||||
hrecursion y.
 | 
					    hrecursion y.
 | 
				
			||||||
- exact x. (* x + base = x *)
 | 
					    - exact x. (* x + base = x *)
 | 
				
			||||||
- apply f. 
 | 
					    - apply f. 
 | 
				
			||||||
Defined.
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Lemma S1op_nr (x : S1) : S1op x base = x.
 | 
					  Lemma S1op_nr (x : S1) : S1op x base = x.
 | 
				
			||||||
Proof. reflexivity. Defined.
 | 
					  Proof. reflexivity. Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Lemma S1op_nl (x : S1) : S1op base x = x.
 | 
					  Lemma S1op_nl (x : S1) : S1op base x = x.
 | 
				
			||||||
Proof.
 | 
					  Proof.
 | 
				
			||||||
hrecursion x.
 | 
					    hrecursion x.
 | 
				
			||||||
- exact loop.
 | 
					    - exact loop.
 | 
				
			||||||
- etransitivity.
 | 
					    - etransitivity.
 | 
				
			||||||
  apply (@transport_paths_FlFr _ _ (fun x => S1op base x) idmap _ _ loop loop).
 | 
					      apply (@transport_paths_FlFr _ _ (fun x => S1op base x) idmap _ _ loop loop).
 | 
				
			||||||
  hott_simpl.
 | 
					      hott_simpl.
 | 
				
			||||||
  apply moveR_pM. apply moveR_pM. hott_simpl.
 | 
					      apply moveR_pM. apply moveR_pM. hott_simpl.
 | 
				
			||||||
  etransitivity. apply (ap_V (S1op base) loop).
 | 
					      etransitivity. apply (ap_V (S1op base) loop).
 | 
				
			||||||
  f_ap. apply S1_rec_beta_loop.
 | 
					      f_ap. apply S1_rec_beta_loop.
 | 
				
			||||||
Defined.
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Lemma S1op_assoc (x y z : S1) : S1op x (S1op y z) = S1op (S1op x y) z.
 | 
					  Lemma S1op_assoc (x y z : S1) : S1op x (S1op y z) = S1op (S1op x y) z.
 | 
				
			||||||
Proof.
 | 
					  Proof.
 | 
				
			||||||
hrecursion z.
 | 
					    hrecursion z.
 | 
				
			||||||
- reflexivity.
 | 
					    - reflexivity.
 | 
				
			||||||
- etransitivity.
 | 
					    - etransitivity.
 | 
				
			||||||
  apply (@transport_paths_FlFr _ _ (fun z => S1op x (S1op y z)) (S1op (S1op x y)) _ _ loop idpath). 
 | 
					      apply (@transport_paths_FlFr _ _ (fun z => S1op x (S1op y z)) (S1op (S1op x y)) _ _ loop idpath). 
 | 
				
			||||||
  hott_simpl.
 | 
					      hott_simpl.
 | 
				
			||||||
  apply moveR_Mp. hott_simpl.
 | 
					      apply moveR_Mp. hott_simpl.
 | 
				
			||||||
  rewrite S1_rec_beta_loop.
 | 
					      rewrite S1_rec_beta_loop.
 | 
				
			||||||
  rewrite ap_compose.
 | 
					      rewrite ap_compose.
 | 
				
			||||||
  rewrite S1_rec_beta_loop.
 | 
					      rewrite S1_rec_beta_loop.
 | 
				
			||||||
  hrecursion y.
 | 
					      hrecursion y.
 | 
				
			||||||
  + symmetry. apply S1_rec_beta_loop.
 | 
					      + symmetry. apply S1_rec_beta_loop.
 | 
				
			||||||
  + apply is1type_S1. 
 | 
					      + apply is1type_S1. 
 | 
				
			||||||
Qed.
 | 
					  Qed.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Lemma S1op_comm (x y : S1) : S1op x y = S1op y x.
 | 
					  Lemma S1op_comm (x y : S1) : S1op x y = S1op y x.
 | 
				
			||||||
Proof.
 | 
					  Proof.
 | 
				
			||||||
hrecursion x.
 | 
					    hrecursion x.
 | 
				
			||||||
- apply S1op_nl.
 | 
					    - apply S1op_nl.
 | 
				
			||||||
- hrecursion y.
 | 
					    - hrecursion y.
 | 
				
			||||||
  + rewrite transport_paths_FlFr. hott_simpl. 
 | 
					      + rewrite transport_paths_FlFr. hott_simpl. 
 | 
				
			||||||
    rewrite S1_rec_beta_loop. reflexivity.
 | 
					        rewrite S1_rec_beta_loop. reflexivity.
 | 
				
			||||||
  + apply is1type_S1.
 | 
					      + apply is1type_S1.
 | 
				
			||||||
Defined.
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Definition FSet_to_S : FSet A -> S1.
 | 
					  Definition FSet_to_S : FSet A -> S1.
 | 
				
			||||||
Proof.
 | 
					  Proof.
 | 
				
			||||||
hrecursion.
 | 
					    hrecursion.
 | 
				
			||||||
- exact base.
 | 
					    - exact base.
 | 
				
			||||||
- intro a. exact base.
 | 
					    - intro a. exact base.
 | 
				
			||||||
- exact S1op.
 | 
					    - exact S1op.
 | 
				
			||||||
- apply S1op_assoc.
 | 
					    - apply S1op_assoc.
 | 
				
			||||||
- apply S1op_comm.
 | 
					    - apply S1op_comm.
 | 
				
			||||||
- apply S1op_nl.
 | 
					    - apply S1op_nl.
 | 
				
			||||||
- apply S1op_nr.
 | 
					    - apply S1op_nr.
 | 
				
			||||||
- simpl. reflexivity.
 | 
					    - simpl. reflexivity.
 | 
				
			||||||
Defined.
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Lemma FSet_S_ap : (nl (@E A)) = (nr E) -> idpath = loop.
 | 
					  Lemma FSet_S_ap : (nl (@E A)) = (nr E) -> idpath = loop.
 | 
				
			||||||
Proof.
 | 
					  Proof.
 | 
				
			||||||
intros H.
 | 
					    intros H.
 | 
				
			||||||
enough (ap FSet_to_S (nl E) = ap FSet_to_S (nr E)) as H'.
 | 
					    enough (ap FSet_to_S (nl E) = ap FSet_to_S (nr E)) as H'.
 | 
				
			||||||
- rewrite FSet_rec_beta_nl in H'. 
 | 
					    - rewrite FSet_rec_beta_nl in H'. 
 | 
				
			||||||
  rewrite FSet_rec_beta_nr in H'.
 | 
					      rewrite FSet_rec_beta_nr in H'.
 | 
				
			||||||
  simpl in H'. unfold S1op_nr in H'.
 | 
					      simpl in H'. unfold S1op_nr in H'.
 | 
				
			||||||
  exact H'^.
 | 
					      exact H'^.
 | 
				
			||||||
- f_ap.
 | 
					    - f_ap.
 | 
				
			||||||
Defined.
 | 
					  Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Lemma FSet_not_hset : IsHSet (FSet A) -> False.
 | 
					  Lemma FSet_not_hset : IsHSet (FSet A) -> False.
 | 
				
			||||||
Proof.
 | 
					  Proof.
 | 
				
			||||||
intros H.
 | 
					    intros H.
 | 
				
			||||||
enough (idpath = loop). 
 | 
					    enough (idpath = loop). 
 | 
				
			||||||
- assert (S1_encode _ idpath = S1_encode _ (loopexp loop (pos Int.one))) as H' by f_ap.
 | 
					    - assert (S1_encode _ idpath = S1_encode _ (loopexp loop (pos Int.one))) as H' by f_ap.
 | 
				
			||||||
  rewrite S1_encode_loopexp in H'. simpl in H'. symmetry in H'.
 | 
					      rewrite S1_encode_loopexp in H'. simpl in H'. symmetry in H'.
 | 
				
			||||||
  apply (pos_neq_zero H').
 | 
					      apply (pos_neq_zero H').
 | 
				
			||||||
- apply FSet_S_ap.
 | 
					    - apply FSet_S_ap.
 | 
				
			||||||
  apply set_path2.
 | 
					      apply set_path2.
 | 
				
			||||||
Qed.
 | 
					  Qed.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
End set_sphere.
 | 
					End set_sphere.
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,323 +1,116 @@
 | 
				
			|||||||
 | 
					(* Definition of Finite Sets as via cons lists *)
 | 
				
			||||||
Require Import HoTT HitTactics.
 | 
					Require Import HoTT HitTactics.
 | 
				
			||||||
Require Import representations.definition.
 | 
					 | 
				
			||||||
From fsets Require Import operations_decidable properties_decidable.
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
Module Export FSetC.
 | 
					Module Export FSetC.
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
Section FSetC.
 | 
					  Section FSetC.
 | 
				
			||||||
Variable A : Type.
 | 
					    Variable A : Type.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Private Inductive FSetC : Type :=
 | 
					    Private Inductive FSetC : Type :=
 | 
				
			||||||
  | Nil : FSetC
 | 
					    | Nil : FSetC
 | 
				
			||||||
  | Cns : A ->  FSetC -> FSetC.
 | 
					    | Cns : A ->  FSetC -> FSetC.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Infix ";;" := Cns (at level 8, right associativity).
 | 
					    Infix ";;" := Cns (at level 8, right associativity).
 | 
				
			||||||
Notation "∅" := Nil.
 | 
					    Notation "∅" := Nil.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom dupl : forall (a: A) (x: FSetC),
 | 
					    Axiom dupl : forall (a: A) (x: FSetC),
 | 
				
			||||||
  a ;; a ;; x = a ;; x. 
 | 
					        a ;; a ;; x = a ;; x. 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom comm : forall (a b: A) (x: FSetC),
 | 
					    Axiom comm : forall (a b: A) (x: FSetC),
 | 
				
			||||||
   a ;; b ;; x = b ;; a ;; x.
 | 
					        a ;; b ;; x = b ;; a ;; x.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom trunc : IsHSet FSetC.
 | 
					    Axiom trunc : IsHSet FSetC.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  End FSetC.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Arguments Nil {_}.
 | 
				
			||||||
 | 
					  Arguments Cns {_} _ _.
 | 
				
			||||||
 | 
					  Arguments dupl {_} _ _.
 | 
				
			||||||
 | 
					  Arguments comm {_} _ _ _.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Infix ";;" := Cns (at level 8, right associativity).
 | 
				
			||||||
 | 
					  Notation "∅" := Nil.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Section FSetC_induction.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Variable A: Type.
 | 
				
			||||||
 | 
					    Variable (P : FSetC A -> Type).
 | 
				
			||||||
 | 
					    Variable (H :  forall x : FSetC A, IsHSet (P x)).
 | 
				
			||||||
 | 
					    Variable (eP : P ∅).
 | 
				
			||||||
 | 
					    Variable (cnsP : forall (a:A) (x: FSetC A), P x -> P (a ;; x)).
 | 
				
			||||||
 | 
					    Variable (duplP : forall (a: A) (x: FSetC A) (px : P x),
 | 
				
			||||||
 | 
						         dupl a x # cnsP a (a;;x) (cnsP a x px) = cnsP a x px).
 | 
				
			||||||
 | 
					    Variable (commP : forall (a b: A) (x: FSetC A) (px: P x),
 | 
				
			||||||
 | 
							 comm a b x # cnsP a (b;;x) (cnsP b x px) = 
 | 
				
			||||||
 | 
							 cnsP b (a;;x) (cnsP a x px)).
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    (* Induction principle *)
 | 
				
			||||||
 | 
					    Fixpoint FSetC_ind
 | 
				
			||||||
 | 
					             (x : FSetC A)
 | 
				
			||||||
 | 
					             {struct x}
 | 
				
			||||||
 | 
					      : P x
 | 
				
			||||||
 | 
					      := (match x return _ -> _ -> _ -> P x with
 | 
				
			||||||
 | 
					          | Nil => fun _ => fun _ => fun _  => eP
 | 
				
			||||||
 | 
					          | a ;; y => fun _ => fun _ => fun _ => cnsP a y (FSetC_ind y)
 | 
				
			||||||
 | 
					          end) H duplP commP.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Axiom FSetC_ind_beta_dupl : forall (a: A) (x : FSetC A),
 | 
				
			||||||
 | 
					        apD FSetC_ind (dupl a x) = 	duplP a x (FSetC_ind x).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Axiom FSetC_ind_beta_comm : forall (a b: A) (x : FSetC A),
 | 
				
			||||||
 | 
					        apD FSetC_ind (comm a b x) = commP a b x (FSetC_ind x).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  End FSetC_induction.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Section FSetC_recursion.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Variable A: Type.
 | 
				
			||||||
 | 
					    Variable (P: Type).
 | 
				
			||||||
 | 
					    Variable (H: IsHSet P).
 | 
				
			||||||
 | 
					    Variable (nil : P).
 | 
				
			||||||
 | 
					    Variable (cns :  A -> P -> P).
 | 
				
			||||||
 | 
					    Variable (duplP : forall (a: A) (x: P), cns a (cns a x) = (cns a x)).
 | 
				
			||||||
 | 
					    Variable (commP : forall (a b: A) (x: P), cns a (cns b x) = cns b (cns a x)).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    (* Recursion principle *)
 | 
				
			||||||
 | 
					    Definition FSetC_rec : FSetC A -> P.
 | 
				
			||||||
 | 
					    Proof.
 | 
				
			||||||
 | 
					      simple refine (FSetC_ind _ _ _ _ _  _ _ ); 
 | 
				
			||||||
 | 
					        try (intros; simple refine ((transport_const _ _) @ _ ));  cbn.
 | 
				
			||||||
 | 
					      - apply nil.
 | 
				
			||||||
 | 
					      - apply 	(fun a => fun _ => cns a). 
 | 
				
			||||||
 | 
					      - apply duplP.
 | 
				
			||||||
 | 
					      - apply commP. 
 | 
				
			||||||
 | 
					    Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Definition FSetC_rec_beta_dupl : forall (a: A) (x : FSetC A),
 | 
				
			||||||
 | 
					        ap FSetC_rec (dupl a x) = duplP a (FSetC_rec x).
 | 
				
			||||||
 | 
					    Proof.
 | 
				
			||||||
 | 
					      intros. 
 | 
				
			||||||
 | 
					      eapply (cancelL (transport_const (dupl a x) _)).
 | 
				
			||||||
 | 
					      simple refine ((apD_const _ _)^ @ _).
 | 
				
			||||||
 | 
					      apply FSetC_ind_beta_dupl.
 | 
				
			||||||
 | 
					    Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Definition FSetC_rec_beta_comm : forall (a b: A) (x : FSetC A),
 | 
				
			||||||
 | 
					        ap FSetC_rec (comm a b x) = commP a b (FSetC_rec x).
 | 
				
			||||||
 | 
					    Proof.
 | 
				
			||||||
 | 
					      intros. 
 | 
				
			||||||
 | 
					      eapply (cancelL (transport_const (comm a b x) _)).
 | 
				
			||||||
 | 
					      simple refine ((apD_const _ _)^ @ _).
 | 
				
			||||||
 | 
					      apply FSetC_ind_beta_comm.
 | 
				
			||||||
 | 
					    Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  End FSetC_recursion.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Instance FSetC_recursion A : HitRecursion (FSetC A) := {
 | 
				
			||||||
 | 
					                                                          indTy := _; recTy := _; 
 | 
				
			||||||
 | 
					                                                          H_inductor := FSetC_ind A; H_recursor := FSetC_rec A }.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
End FSetC.
 | 
					End FSetC.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Arguments Nil {_}.
 | 
					 | 
				
			||||||
Arguments Cns {_} _ _.
 | 
					 | 
				
			||||||
Arguments dupl {_} _ _.
 | 
					 | 
				
			||||||
Arguments comm {_} _ _ _.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Infix ";;" := Cns (at level 8, right associativity).
 | 
					Infix ";;" := Cns (at level 8, right associativity).
 | 
				
			||||||
Notation "∅" := Nil.
 | 
					Notation "∅" := Nil.
 | 
				
			||||||
 | 
					 | 
				
			||||||
Section FSetC_induction.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Variable A: Type.
 | 
					 | 
				
			||||||
Variable (P : FSetC A -> Type).
 | 
					 | 
				
			||||||
Variable (H :  forall x : FSetC A, IsHSet (P x)).
 | 
					 | 
				
			||||||
Variable (eP : P ∅).
 | 
					 | 
				
			||||||
Variable (cnsP : forall (a:A) (x: FSetC A), P x -> P (a ;; x)).
 | 
					 | 
				
			||||||
Variable (duplP : forall (a: A) (x: FSetC A) (px : P x),
 | 
					 | 
				
			||||||
	          dupl a x # cnsP a (a;;x) (cnsP a x px) = cnsP a x px).
 | 
					 | 
				
			||||||
Variable (commP : forall (a b: A) (x: FSetC A) (px: P x),
 | 
					 | 
				
			||||||
			     comm a b x # cnsP a (b;;x) (cnsP b x px) = 
 | 
					 | 
				
			||||||
			     cnsP b (a;;x) (cnsP a x px)).
 | 
					 | 
				
			||||||
			     
 | 
					 | 
				
			||||||
(* Induction principle *)
 | 
					 | 
				
			||||||
Fixpoint FSetC_ind
 | 
					 | 
				
			||||||
  (x : FSetC A)
 | 
					 | 
				
			||||||
  {struct x}
 | 
					 | 
				
			||||||
  : P x
 | 
					 | 
				
			||||||
  := (match x return _ -> _ -> _ -> P x with
 | 
					 | 
				
			||||||
        | Nil => fun _ => fun _ => fun _  => eP
 | 
					 | 
				
			||||||
        | a ;; y => fun _ => fun _ => fun _ => cnsP a y (FSetC_ind y)
 | 
					 | 
				
			||||||
      end) H duplP commP.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Axiom FSetC_ind_beta_dupl : forall (a: A) (x : FSetC A),
 | 
					 | 
				
			||||||
  apD FSetC_ind (dupl a x) = 	duplP a x (FSetC_ind x).
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Axiom FSetC_ind_beta_comm : forall (a b: A) (x : FSetC A),
 | 
					 | 
				
			||||||
  apD FSetC_ind (comm a b x) = commP a b x (FSetC_ind x).
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
End FSetC_induction.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Section FSetC_recursion.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Variable A: Type.
 | 
					 | 
				
			||||||
Variable (P: Type).
 | 
					 | 
				
			||||||
Variable (H: IsHSet P).
 | 
					 | 
				
			||||||
Variable (nil : P).
 | 
					 | 
				
			||||||
Variable (cns :  A -> P -> P).
 | 
					 | 
				
			||||||
Variable (duplP : forall (a: A) (x: P), cns a (cns a x) = (cns a x)).
 | 
					 | 
				
			||||||
Variable (commP : forall (a b: A) (x: P), cns a (cns b x) = cns b (cns a x)).
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
(* Recursion principle *)
 | 
					 | 
				
			||||||
Definition FSetC_rec : FSetC A -> P.
 | 
					 | 
				
			||||||
Proof.
 | 
					 | 
				
			||||||
simple refine (FSetC_ind _ _ _ _ _  _ _ ); 
 | 
					 | 
				
			||||||
try (intros; simple refine ((transport_const _ _) @ _ ));  cbn.
 | 
					 | 
				
			||||||
- apply nil.
 | 
					 | 
				
			||||||
- apply 	(fun a => fun _ => cns a). 
 | 
					 | 
				
			||||||
- apply duplP.
 | 
					 | 
				
			||||||
- apply commP. 
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Definition FSetC_rec_beta_dupl : forall (a: A) (x : FSetC A),
 | 
					 | 
				
			||||||
  ap FSetC_rec (dupl a x) = duplP a (FSetC_rec x).
 | 
					 | 
				
			||||||
Proof.
 | 
					 | 
				
			||||||
intros. 
 | 
					 | 
				
			||||||
unfold FSet_rec.
 | 
					 | 
				
			||||||
eapply (cancelL (transport_const (dupl a x) _)).
 | 
					 | 
				
			||||||
simple refine ((apD_const _ _)^ @ _).
 | 
					 | 
				
			||||||
apply FSetC_ind_beta_dupl.
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Definition FSetC_rec_beta_comm : forall (a b: A) (x : FSetC A),
 | 
					 | 
				
			||||||
  ap FSetC_rec (comm a b x) = commP a b (FSetC_rec x).
 | 
					 | 
				
			||||||
Proof.
 | 
					 | 
				
			||||||
intros. 
 | 
					 | 
				
			||||||
unfold FSet_rec.
 | 
					 | 
				
			||||||
eapply (cancelL (transport_const (comm a b x) _)).
 | 
					 | 
				
			||||||
simple refine ((apD_const _ _)^ @ _).
 | 
					 | 
				
			||||||
apply FSetC_ind_beta_comm.
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
End FSetC_recursion.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Instance FSetC_recursion A : HitRecursion (FSetC A) := {
 | 
					 | 
				
			||||||
  indTy := _; recTy := _; 
 | 
					 | 
				
			||||||
  H_inductor := FSetC_ind A; H_recursor := FSetC_rec A }.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Section Append.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Context {A : Type}.
 | 
					 | 
				
			||||||
Context {A_deceq : DecidablePaths A}.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Definition append  (x y: FSetC A) : FSetC A.
 | 
					 | 
				
			||||||
hinduction x.
 | 
					 | 
				
			||||||
- apply y.
 | 
					 | 
				
			||||||
- apply Cns.
 | 
					 | 
				
			||||||
- apply dupl.
 | 
					 | 
				
			||||||
- apply comm.
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Lemma append_nl: 
 | 
					 | 
				
			||||||
  forall (x: FSetC A), append ∅ x = x. 
 | 
					 | 
				
			||||||
Proof.
 | 
					 | 
				
			||||||
  intro. reflexivity.
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Lemma append_nr: 
 | 
					 | 
				
			||||||
  forall (x: FSetC A), append x ∅ = x.
 | 
					 | 
				
			||||||
Proof.
 | 
					 | 
				
			||||||
  hinduction; try (intros; apply set_path2).
 | 
					 | 
				
			||||||
  -  reflexivity.
 | 
					 | 
				
			||||||
  -  intros. apply (ap (fun y => a ;; y) X).
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
 
 | 
					 | 
				
			||||||
Lemma append_assoc {H: Funext}:  
 | 
					 | 
				
			||||||
  forall (x y z: FSetC A), append x (append y z) = append (append x y) z.
 | 
					 | 
				
			||||||
Proof.
 | 
					 | 
				
			||||||
  intro x; hinduction x; try (intros; apply set_path2).
 | 
					 | 
				
			||||||
  - reflexivity.
 | 
					 | 
				
			||||||
  - intros a x HR y z. 
 | 
					 | 
				
			||||||
    specialize (HR y z).
 | 
					 | 
				
			||||||
    apply (ap (fun y => a ;; y) HR). 
 | 
					 | 
				
			||||||
  - intros. apply path_forall. 
 | 
					 | 
				
			||||||
  	  intro. apply path_forall. 
 | 
					 | 
				
			||||||
  	  intro. apply set_path2.
 | 
					 | 
				
			||||||
  - intros. apply path_forall.
 | 
					 | 
				
			||||||
    intro. apply path_forall. 
 | 
					 | 
				
			||||||
  	  intro. apply set_path2.
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
 Lemma aux: forall (a: A) (x: FSetC A), 
 | 
					 | 
				
			||||||
   a ;; x = append x (a ;; ∅).
 | 
					 | 
				
			||||||
Proof.
 | 
					 | 
				
			||||||
intro a. hinduction; try (intros; apply set_path2).
 | 
					 | 
				
			||||||
- reflexivity.
 | 
					 | 
				
			||||||
- intros b x HR. refine (_ @ _).
 | 
					 | 
				
			||||||
	+ apply comm.
 | 
					 | 
				
			||||||
	+ apply (ap (fun y => b ;; y) HR).
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Lemma append_comm {H: Funext}: 
 | 
					 | 
				
			||||||
  forall (x1 x2: FSetC A), append x1 x2 = append x2 x1.
 | 
					 | 
				
			||||||
Proof.
 | 
					 | 
				
			||||||
  intro x1. 
 | 
					 | 
				
			||||||
  hinduction x1;  try (intros; apply set_path2).
 | 
					 | 
				
			||||||
  - intros. symmetry. apply append_nr. 
 | 
					 | 
				
			||||||
  - intros a x1 HR x2.
 | 
					 | 
				
			||||||
    etransitivity.
 | 
					 | 
				
			||||||
    apply (ap (fun y => a;;y) (HR x2)).  
 | 
					 | 
				
			||||||
    transitivity  (append (append x2 x1) (a;;∅)).
 | 
					 | 
				
			||||||
    + apply aux. 
 | 
					 | 
				
			||||||
    + etransitivity.
 | 
					 | 
				
			||||||
    	  * symmetry. apply append_assoc.
 | 
					 | 
				
			||||||
    	  * simple refine (ap (fun y => append x2 y) (aux _ _)^).
 | 
					 | 
				
			||||||
  - intros. apply path_forall.
 | 
					 | 
				
			||||||
    intro. apply set_path2.
 | 
					 | 
				
			||||||
  - intros. apply path_forall.
 | 
					 | 
				
			||||||
    intro. apply set_path2.  
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
End Append.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Section Singleton.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Context {A : Type}.
 | 
					 | 
				
			||||||
Context {A_deceq : DecidablePaths A}.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Definition singleton (a:A) : FSetC A := a;;∅.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Lemma singleton_idem: forall (a: A), 
 | 
					 | 
				
			||||||
  append (singleton a) (singleton a) = singleton a.
 | 
					 | 
				
			||||||
Proof.
 | 
					 | 
				
			||||||
unfold singleton. intro. cbn. apply dupl.
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
End Singleton.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Infix ";;" := Cns (at level 8, right associativity).
 | 
					 | 
				
			||||||
Notation "∅" := Nil.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
End FSetC.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Section Iso.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Context {A : Type}.
 | 
					 | 
				
			||||||
Context {A_deceq : DecidablePaths A}.
 | 
					 | 
				
			||||||
Context {H : Funext}.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Definition FSetC_to_FSet: FSetC A -> FSet A.
 | 
					 | 
				
			||||||
Proof.
 | 
					 | 
				
			||||||
hrecursion.
 | 
					 | 
				
			||||||
- apply E.
 | 
					 | 
				
			||||||
- intros a x. apply (U (L a) x).
 | 
					 | 
				
			||||||
- intros. cbn.  
 | 
					 | 
				
			||||||
	etransitivity. apply assoc.
 | 
					 | 
				
			||||||
	apply (ap (fun y => U y x)).
 | 
					 | 
				
			||||||
	apply idem.
 | 
					 | 
				
			||||||
- intros. cbn.
 | 
					 | 
				
			||||||
 etransitivity. apply assoc.
 | 
					 | 
				
			||||||
 etransitivity. refine (ap (fun y => U y x) _ ).
 | 
					 | 
				
			||||||
 apply FSet.comm.
 | 
					 | 
				
			||||||
 symmetry. 
 | 
					 | 
				
			||||||
 apply assoc.
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Definition FSet_to_FSetC: FSet A -> FSetC A :=
 | 
					 | 
				
			||||||
  FSet_rec A (FSetC A) (trunc A) ∅ singleton append append_assoc 
 | 
					 | 
				
			||||||
    append_comm append_nl append_nr singleton_idem.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Lemma append_union: forall (x y: FSetC A), 
 | 
					 | 
				
			||||||
  FSetC_to_FSet (append x y) = U (FSetC_to_FSet x) (FSetC_to_FSet y).
 | 
					 | 
				
			||||||
Proof.
 | 
					 | 
				
			||||||
intros x. 
 | 
					 | 
				
			||||||
hrecursion x; try (intros; apply path_forall; intro; apply set_path2).
 | 
					 | 
				
			||||||
- intros. symmetry. apply nl.
 | 
					 | 
				
			||||||
- intros a x HR y. rewrite HR. apply assoc.
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Lemma repr_iso_id_l: forall (x: FSet A), FSetC_to_FSet (FSet_to_FSetC x) = x.
 | 
					 | 
				
			||||||
Proof.
 | 
					 | 
				
			||||||
hinduction; try (intros; apply set_path2).
 | 
					 | 
				
			||||||
- reflexivity.
 | 
					 | 
				
			||||||
- intro. apply nr.
 | 
					 | 
				
			||||||
- intros x y p q. rewrite append_union, p, q. reflexivity.
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Lemma repr_iso_id_r: forall (x: FSetC A), FSet_to_FSetC (FSetC_to_FSet x) = x.
 | 
					 | 
				
			||||||
Proof.
 | 
					 | 
				
			||||||
hinduction; try (intros; apply set_path2).
 | 
					 | 
				
			||||||
- reflexivity.
 | 
					 | 
				
			||||||
- intros a x HR. rewrite HR. reflexivity.
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Theorem repr_iso: FSet A <~> FSetC A.
 | 
					 | 
				
			||||||
Proof.
 | 
					 | 
				
			||||||
simple refine (@BuildEquiv (FSet A) (FSetC A) FSet_to_FSetC _ ).
 | 
					 | 
				
			||||||
apply isequiv_biinv.
 | 
					 | 
				
			||||||
unfold BiInv. split.
 | 
					 | 
				
			||||||
exists FSetC_to_FSet.
 | 
					 | 
				
			||||||
unfold Sect. apply repr_iso_id_l.
 | 
					 | 
				
			||||||
exists FSetC_to_FSet.
 | 
					 | 
				
			||||||
unfold Sect. apply repr_iso_id_r.
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
End Iso.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Section Length.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Context {A : Type}.
 | 
					 | 
				
			||||||
Context {A_deceq : DecidablePaths A}.
 | 
					 | 
				
			||||||
Context `{Univalence}.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Opaque isIn_b.
 | 
					 | 
				
			||||||
Definition length (x: FSetC A) : nat.
 | 
					 | 
				
			||||||
Proof.
 | 
					 | 
				
			||||||
simple refine (FSetC_ind A _ _ _ _ _ _ x ); simpl.
 | 
					 | 
				
			||||||
- exact 0.
 | 
					 | 
				
			||||||
- intros a y n. 
 | 
					 | 
				
			||||||
  pose (y' := FSetC_to_FSet y).
 | 
					 | 
				
			||||||
  exact (if isIn_b a y' then n else (S n)).
 | 
					 | 
				
			||||||
- intros. rewrite transport_const. cbn.
 | 
					 | 
				
			||||||
  simplify_isIn. simpl. reflexivity.
 | 
					 | 
				
			||||||
- intros. rewrite transport_const. cbn.
 | 
					 | 
				
			||||||
  simplify_isIn.
 | 
					 | 
				
			||||||
  destruct (dec (a = b)) as [Hab | Hab].
 | 
					 | 
				
			||||||
  + rewrite Hab. simplify_isIn. simpl. reflexivity.
 | 
					 | 
				
			||||||
  + rewrite ?L_isIn_b_false; auto. simpl. 
 | 
					 | 
				
			||||||
    destruct (isIn_b a (FSetC_to_FSet x0)), (isIn_b b (FSetC_to_FSet x0)) ; reflexivity.
 | 
					 | 
				
			||||||
    intro p. contradiction (Hab p^).
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Definition length_FSet (x: FSet A) := length (FSet_to_FSetC x).
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Lemma length_singleton: forall (a: A), length_FSet (L a) = 1.
 | 
					 | 
				
			||||||
Proof. 
 | 
					 | 
				
			||||||
intro a.
 | 
					 | 
				
			||||||
cbn. reflexivity. 
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
End Length.
 | 
					 | 
				
			||||||
 
 | 
				
			|||||||
@@ -3,190 +3,189 @@ Require Import HoTT.
 | 
				
			|||||||
Require Import HitTactics.
 | 
					Require Import HitTactics.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Module Export FSet.
 | 
					Module Export FSet.
 | 
				
			||||||
 | 
					  Section FSet.
 | 
				
			||||||
 | 
					    Variable A : Type.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Section FSet.
 | 
					    Private Inductive FSet : Type :=
 | 
				
			||||||
Variable A : Type.
 | 
					    | E : FSet
 | 
				
			||||||
 | 
					    | L : A -> FSet
 | 
				
			||||||
 | 
					    | U : FSet -> FSet -> FSet.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Private Inductive FSet : Type :=
 | 
					    Notation "{| x |}" :=  (L x).
 | 
				
			||||||
  | E : FSet
 | 
					    Infix "∪" := U (at level 8, right associativity).
 | 
				
			||||||
  | L : A -> FSet
 | 
					    Notation "∅" := E.
 | 
				
			||||||
  | U : FSet -> FSet -> FSet.
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
Notation "{| x |}" :=  (L x).
 | 
					    Axiom assoc : forall (x y z : FSet ),
 | 
				
			||||||
Infix "∪" := U (at level 8, right associativity).
 | 
					        x ∪ (y ∪ z) = (x ∪ y) ∪ z.
 | 
				
			||||||
Notation "∅" := E.
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom assoc : forall (x y z : FSet ),
 | 
					    Axiom comm : forall (x y : FSet),
 | 
				
			||||||
  x ∪ (y ∪ z) = (x ∪ y) ∪ z.
 | 
					        x ∪ y = y ∪ x.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom comm : forall (x y : FSet),
 | 
					    Axiom nl : forall (x : FSet),
 | 
				
			||||||
  x ∪ y = y ∪ x.
 | 
					        ∅ ∪ x = x.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom nl : forall (x : FSet),
 | 
					    Axiom nr : forall (x : FSet),
 | 
				
			||||||
  ∅ ∪ x = x.
 | 
					        x ∪ ∅ = x.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom nr : forall (x : FSet),
 | 
					    Axiom idem : forall (x : A),
 | 
				
			||||||
  x ∪ ∅ = x.
 | 
					        {| x |} ∪ {|x|} = {|x|}.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom idem : forall (x : A),
 | 
					    Axiom trunc : IsHSet FSet.
 | 
				
			||||||
  {| x |} ∪ {|x|} = {|x|}.
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom trunc : IsHSet FSet.
 | 
					  End FSet.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
End FSet.
 | 
					  Arguments E {_}.
 | 
				
			||||||
 | 
					  Arguments U {_} _ _.
 | 
				
			||||||
 | 
					  Arguments L {_} _.
 | 
				
			||||||
 | 
					  Arguments assoc {_} _ _ _.
 | 
				
			||||||
 | 
					  Arguments comm {_} _ _.
 | 
				
			||||||
 | 
					  Arguments nl {_} _.
 | 
				
			||||||
 | 
					  Arguments nr {_} _.
 | 
				
			||||||
 | 
					  Arguments idem {_} _.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Arguments E {_}.
 | 
					  Section FSet_induction.
 | 
				
			||||||
Arguments U {_} _ _.
 | 
					    Variable A: Type.
 | 
				
			||||||
Arguments L {_} _.
 | 
					    Variable  (P : FSet A -> Type).
 | 
				
			||||||
Arguments assoc {_} _ _ _.
 | 
					    Variable  (H :  forall a : FSet A, IsHSet (P a)).
 | 
				
			||||||
Arguments comm {_} _ _.
 | 
					    Variable  (eP : P E).
 | 
				
			||||||
Arguments nl {_} _.
 | 
					    Variable  (lP : forall a: A, P (L a)).
 | 
				
			||||||
Arguments nr {_} _.
 | 
					    Variable  (uP : forall (x y: FSet A), P x -> P y -> P (U x y)).
 | 
				
			||||||
Arguments idem {_} _.
 | 
					    Variable  (assocP : forall (x y z : FSet A) 
 | 
				
			||||||
 | 
					                               (px: P x) (py: P y) (pz: P z),
 | 
				
			||||||
 | 
					                  assoc x y z #
 | 
				
			||||||
 | 
					                        (uP      x    (U y z)          px        (uP y z py pz)) 
 | 
				
			||||||
 | 
					                  = 
 | 
				
			||||||
 | 
					                  (uP   (U x y)    z       (uP x y px py)          pz)).
 | 
				
			||||||
 | 
					    Variable  (commP : forall (x y: FSet A) (px: P x) (py: P y),
 | 
				
			||||||
 | 
					                  comm x y #
 | 
				
			||||||
 | 
					                       uP x y px py = uP y x py px).
 | 
				
			||||||
 | 
					    Variable  (nlP : forall (x : FSet A) (px: P x), 
 | 
				
			||||||
 | 
					                  nl x # uP E x eP px = px).
 | 
				
			||||||
 | 
					    Variable  (nrP : forall (x : FSet A) (px: P x), 
 | 
				
			||||||
 | 
					                  nr x # uP x E px eP = px).
 | 
				
			||||||
 | 
					    Variable  (idemP : forall (x : A), 
 | 
				
			||||||
 | 
					                  idem x # uP (L x) (L x) (lP x) (lP x) = lP x).
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
Section FSet_induction.
 | 
					    (* Induction principle *)
 | 
				
			||||||
Variable A: Type.
 | 
					    Fixpoint FSet_ind
 | 
				
			||||||
Variable  (P : FSet A -> Type).
 | 
					             (x : FSet A)
 | 
				
			||||||
Variable  (H :  forall a : FSet A, IsHSet (P a)).
 | 
					             {struct x}
 | 
				
			||||||
Variable  (eP : P E).
 | 
					      : P x
 | 
				
			||||||
Variable  (lP : forall a: A, P (L a)).
 | 
					      := (match x return _ -> _ -> _ -> _ -> _ -> _ -> P x with
 | 
				
			||||||
Variable  (uP : forall (x y: FSet A), P x -> P y -> P (U x y)).
 | 
					          | E => fun _ _ _ _ _ _ => eP
 | 
				
			||||||
Variable  (assocP : forall (x y z : FSet A) 
 | 
					          | L a => fun _ _ _ _ _ _ => lP a
 | 
				
			||||||
                   (px: P x) (py: P y) (pz: P z),
 | 
					          | U y z => fun _ _ _ _ _ _ => uP y z (FSet_ind y) (FSet_ind z)
 | 
				
			||||||
  assoc x y z #
 | 
					          end) H assocP commP nlP nrP idemP.
 | 
				
			||||||
   (uP      x    (U y z)          px        (uP y z py pz)) 
 | 
					 | 
				
			||||||
  = 
 | 
					 | 
				
			||||||
   (uP   (U x y)    z       (uP x y px py)          pz)).
 | 
					 | 
				
			||||||
Variable  (commP : forall (x y: FSet A) (px: P x) (py: P y),
 | 
					 | 
				
			||||||
  comm x y #
 | 
					 | 
				
			||||||
  uP x y px py = uP y x py px).
 | 
					 | 
				
			||||||
Variable  (nlP : forall (x : FSet A) (px: P x), 
 | 
					 | 
				
			||||||
  nl x # uP E x eP px = px).
 | 
					 | 
				
			||||||
Variable  (nrP : forall (x : FSet A) (px: P x), 
 | 
					 | 
				
			||||||
  nr x # uP x E px eP = px).
 | 
					 | 
				
			||||||
Variable  (idemP : forall (x : A), 
 | 
					 | 
				
			||||||
  idem x # uP (L x) (L x) (lP x) (lP x) = lP x).
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
(* Induction principle *)
 | 
					    Axiom FSet_ind_beta_assoc : forall (x y z : FSet A),
 | 
				
			||||||
Fixpoint FSet_ind
 | 
					        apD FSet_ind (assoc x y z) =
 | 
				
			||||||
  (x : FSet A)
 | 
					        (assocP x y z (FSet_ind x)  (FSet_ind y) (FSet_ind z)).
 | 
				
			||||||
  {struct x}
 | 
					 | 
				
			||||||
  : P x
 | 
					 | 
				
			||||||
  := (match x return _ -> _ -> _ -> _ -> _ -> _ -> P x with
 | 
					 | 
				
			||||||
      | E => fun _ _ _ _ _ _ => eP
 | 
					 | 
				
			||||||
      | L a => fun _ _ _ _ _ _ => lP a
 | 
					 | 
				
			||||||
      | U y z => fun _ _ _ _ _ _ => uP y z (FSet_ind y) (FSet_ind z)
 | 
					 | 
				
			||||||
      end) H assocP commP nlP nrP idemP.
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Axiom FSet_ind_beta_comm : forall (x y : FSet A),
 | 
				
			||||||
 | 
					        apD FSet_ind (comm x y) = (commP x y (FSet_ind x) (FSet_ind y)).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom FSet_ind_beta_assoc : forall (x y z : FSet A),
 | 
					    Axiom FSet_ind_beta_nl : forall (x : FSet A),
 | 
				
			||||||
  apD FSet_ind (assoc x y z) =
 | 
					        apD FSet_ind (nl x) = (nlP x (FSet_ind x)).
 | 
				
			||||||
  (assocP x y z (FSet_ind x)  (FSet_ind y) (FSet_ind z)).
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom FSet_ind_beta_comm : forall (x y : FSet A),
 | 
					    Axiom FSet_ind_beta_nr : forall (x : FSet A),
 | 
				
			||||||
  apD FSet_ind (comm x y) = (commP x y (FSet_ind x) (FSet_ind y)).
 | 
					        apD FSet_ind (nr x) = (nrP x (FSet_ind x)).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom FSet_ind_beta_nl : forall (x : FSet A),
 | 
					    Axiom FSet_ind_beta_idem : forall (x : A), apD FSet_ind (idem x) = idemP x.
 | 
				
			||||||
  apD FSet_ind (nl x) = (nlP x (FSet_ind x)).
 | 
					  End FSet_induction.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom FSet_ind_beta_nr : forall (x : FSet A),
 | 
					  Section FSet_recursion.
 | 
				
			||||||
  apD FSet_ind (nr x) = (nrP x (FSet_ind x)).
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
Axiom FSet_ind_beta_idem : forall (x : A), apD FSet_ind (idem x) = idemP x.
 | 
					    Variable A : Type.
 | 
				
			||||||
End FSet_induction.
 | 
					    Variable P : Type.
 | 
				
			||||||
 | 
					    Variable H: IsHSet P.
 | 
				
			||||||
 | 
					    Variable e : P.
 | 
				
			||||||
 | 
					    Variable l : A -> P.
 | 
				
			||||||
 | 
					    Variable u : P -> P -> P.
 | 
				
			||||||
 | 
					    Variable assocP : forall (x y z : P), u x (u y z) = u (u x y) z.
 | 
				
			||||||
 | 
					    Variable commP : forall (x y : P), u x y = u y x.
 | 
				
			||||||
 | 
					    Variable nlP : forall (x : P), u e x = x.
 | 
				
			||||||
 | 
					    Variable nrP : forall (x : P), u x e = x.
 | 
				
			||||||
 | 
					    Variable idemP : forall (x : A), u (l x) (l x) = l x.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Section FSet_recursion.
 | 
					    Definition FSet_rec : FSet A -> P.
 | 
				
			||||||
 | 
					    Proof.
 | 
				
			||||||
 | 
					      simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _)
 | 
				
			||||||
 | 
					      ; try (intros ; simple refine ((transport_const _ _) @ _)) ; cbn.
 | 
				
			||||||
 | 
					      - apply e.
 | 
				
			||||||
 | 
					      - apply l.
 | 
				
			||||||
 | 
					      - intros x y ; apply u.
 | 
				
			||||||
 | 
					      - apply assocP.
 | 
				
			||||||
 | 
					      - apply commP.
 | 
				
			||||||
 | 
					      - apply nlP.
 | 
				
			||||||
 | 
					      - apply nrP.
 | 
				
			||||||
 | 
					      - apply idemP.
 | 
				
			||||||
 | 
					    Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Variable A : Type.
 | 
					    Definition FSet_rec_beta_assoc : forall (x y z : FSet A),
 | 
				
			||||||
Variable P : Type.
 | 
					        ap FSet_rec (assoc x y z) 
 | 
				
			||||||
Variable H: IsHSet P.
 | 
					        =
 | 
				
			||||||
Variable e : P.
 | 
					        assocP (FSet_rec x) (FSet_rec y) (FSet_rec z).
 | 
				
			||||||
Variable l : A -> P.
 | 
					    Proof.
 | 
				
			||||||
Variable u : P -> P -> P.
 | 
					      intros.
 | 
				
			||||||
Variable assocP : forall (x y z : P), u x (u y z) = u (u x y) z.
 | 
					      unfold FSet_rec.
 | 
				
			||||||
Variable commP : forall (x y : P), u x y = u y x.
 | 
					      eapply (cancelL (transport_const (assoc x y z) _)).
 | 
				
			||||||
Variable nlP : forall (x : P), u e x = x.
 | 
					      simple refine ((apD_const _ _)^ @ _).
 | 
				
			||||||
Variable nrP : forall (x : P), u x e = x.
 | 
					      apply FSet_ind_beta_assoc.
 | 
				
			||||||
Variable idemP : forall (x : A), u (l x) (l x) = l x.
 | 
					    Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Definition FSet_rec : FSet A -> P.
 | 
					    Definition FSet_rec_beta_comm : forall (x y : FSet A),
 | 
				
			||||||
Proof.
 | 
					        ap FSet_rec (comm x y) 
 | 
				
			||||||
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; simple refine ((transport_const _ _) @ _)) ; cbn.
 | 
					        =
 | 
				
			||||||
- apply e.
 | 
					        commP (FSet_rec x) (FSet_rec y).
 | 
				
			||||||
- apply l.
 | 
					    Proof.
 | 
				
			||||||
- intros x y ; apply u.
 | 
					      intros.
 | 
				
			||||||
- apply assocP.
 | 
					      unfold FSet_rec.
 | 
				
			||||||
- apply commP.
 | 
					      eapply (cancelL (transport_const (comm x y) _)).
 | 
				
			||||||
- apply nlP.
 | 
					      simple refine ((apD_const _ _)^ @ _).
 | 
				
			||||||
- apply nrP.
 | 
					      apply FSet_ind_beta_comm.
 | 
				
			||||||
- apply idemP.
 | 
					    Defined.
 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
Definition FSet_rec_beta_assoc : forall (x y z : FSet A),
 | 
					    Definition FSet_rec_beta_nl : forall (x : FSet A),
 | 
				
			||||||
  ap FSet_rec (assoc x y z) 
 | 
					        ap FSet_rec (nl x) 
 | 
				
			||||||
  =
 | 
					        =
 | 
				
			||||||
  assocP (FSet_rec x) (FSet_rec y) (FSet_rec z).
 | 
					        nlP (FSet_rec x).
 | 
				
			||||||
Proof.
 | 
					    Proof.
 | 
				
			||||||
intros.
 | 
					      intros.
 | 
				
			||||||
unfold FSet_rec.
 | 
					      unfold FSet_rec.
 | 
				
			||||||
eapply (cancelL (transport_const (assoc x y z) _)).
 | 
					      eapply (cancelL (transport_const (nl x) _)).
 | 
				
			||||||
simple refine ((apD_const _ _)^ @ _).
 | 
					      simple refine ((apD_const _ _)^ @ _).
 | 
				
			||||||
apply FSet_ind_beta_assoc.
 | 
					      apply FSet_ind_beta_nl.
 | 
				
			||||||
Defined.
 | 
					    Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Definition FSet_rec_beta_comm : forall (x y : FSet A),
 | 
					    Definition FSet_rec_beta_nr : forall (x : FSet A),
 | 
				
			||||||
  ap FSet_rec (comm x y) 
 | 
					        ap FSet_rec (nr x) 
 | 
				
			||||||
  =
 | 
					        =
 | 
				
			||||||
  commP (FSet_rec x) (FSet_rec y).
 | 
					        nrP (FSet_rec x).
 | 
				
			||||||
Proof.
 | 
					    Proof.
 | 
				
			||||||
intros.
 | 
					      intros.
 | 
				
			||||||
unfold FSet_rec.
 | 
					      unfold FSet_rec.
 | 
				
			||||||
eapply (cancelL (transport_const (comm x y) _)).
 | 
					      eapply (cancelL (transport_const (nr x) _)).
 | 
				
			||||||
simple refine ((apD_const _ _)^ @ _).
 | 
					      simple refine ((apD_const _ _)^ @ _).
 | 
				
			||||||
apply FSet_ind_beta_comm.
 | 
					      apply FSet_ind_beta_nr.
 | 
				
			||||||
Defined.
 | 
					    Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Definition FSet_rec_beta_nl : forall (x : FSet A),
 | 
					    Definition FSet_rec_beta_idem : forall (a : A),
 | 
				
			||||||
  ap FSet_rec (nl x) 
 | 
					        ap FSet_rec (idem a) 
 | 
				
			||||||
  =
 | 
					        =
 | 
				
			||||||
  nlP (FSet_rec x).
 | 
					        idemP a.
 | 
				
			||||||
Proof.
 | 
					    Proof.
 | 
				
			||||||
intros.
 | 
					      intros.
 | 
				
			||||||
unfold FSet_rec.
 | 
					      unfold FSet_rec.
 | 
				
			||||||
eapply (cancelL (transport_const (nl x) _)).
 | 
					      eapply (cancelL (transport_const (idem a) _)).
 | 
				
			||||||
simple refine ((apD_const _ _)^ @ _).
 | 
					      simple refine ((apD_const _ _)^ @ _).
 | 
				
			||||||
apply FSet_ind_beta_nl.
 | 
					      apply FSet_ind_beta_idem.
 | 
				
			||||||
Defined.
 | 
					    Defined.
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
Definition FSet_rec_beta_nr : forall (x : FSet A),
 | 
					  End FSet_recursion.
 | 
				
			||||||
  ap FSet_rec (nr x) 
 | 
					 | 
				
			||||||
  =
 | 
					 | 
				
			||||||
  nrP (FSet_rec x).
 | 
					 | 
				
			||||||
Proof.
 | 
					 | 
				
			||||||
intros.
 | 
					 | 
				
			||||||
unfold FSet_rec.
 | 
					 | 
				
			||||||
eapply (cancelL (transport_const (nr x) _)).
 | 
					 | 
				
			||||||
simple refine ((apD_const _ _)^ @ _).
 | 
					 | 
				
			||||||
apply FSet_ind_beta_nr.
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
Definition FSet_rec_beta_idem : forall (a : A),
 | 
					  Instance FSet_recursion A : HitRecursion (FSet A) := {
 | 
				
			||||||
  ap FSet_rec (idem a) 
 | 
					                                                        indTy := _; recTy := _; 
 | 
				
			||||||
  =
 | 
					                                                        H_inductor := FSet_ind A; H_recursor := FSet_rec A }.
 | 
				
			||||||
  idemP a.
 | 
					 | 
				
			||||||
Proof.
 | 
					 | 
				
			||||||
intros.
 | 
					 | 
				
			||||||
unfold FSet_rec.
 | 
					 | 
				
			||||||
eapply (cancelL (transport_const (idem a) _)).
 | 
					 | 
				
			||||||
simple refine ((apD_const _ _)^ @ _).
 | 
					 | 
				
			||||||
apply FSet_ind_beta_idem.
 | 
					 | 
				
			||||||
Defined.
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
End FSet_recursion.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Instance FSet_recursion A : HitRecursion (FSet A) := {
 | 
					 | 
				
			||||||
  indTy := _; recTy := _; 
 | 
					 | 
				
			||||||
  H_inductor := FSet_ind A; H_recursor := FSet_rec A }.
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
End FSet.
 | 
					End FSet.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user