1
0
mirror of https://github.com/nmvdw/HITs-Examples synced 2025-12-14 06:13:51 +01:00

Clean up trailing whitespaces and an unused definition.

This commit is contained in:
2017-08-09 18:05:58 +02:00
parent 31e08af1d1
commit 33808928db
15 changed files with 137 additions and 152 deletions

View File

@@ -7,7 +7,7 @@ Section properties.
Context {A : Type}.
Definition append_nl : forall (x: FSetC A), x = x
:= fun _ => idpath.
:= fun _ => idpath.
Lemma append_nr : forall (x: FSetC A), x = x.
Proof.
@@ -15,20 +15,20 @@ Section properties.
- reflexivity.
- intros. apply (ap (fun y => a;;y) X).
Defined.
Lemma append_assoc {H: Funext}:
Lemma append_assoc {H: Funext}:
forall (x y z: FSetC A), x (y z) = (x y) z.
Proof.
hinduction
; try (intros ; apply path_forall ; intro
; apply path_forall ; intro ; apply set_path2).
- reflexivity.
- intros a x HR y z.
- intros a x HR y z.
specialize (HR y z).
apply (ap (fun y => a;;y) HR).
apply (ap (fun y => a;;y) HR).
Defined.
Lemma append_singleton: forall (a: A) (x: FSetC A),
Lemma append_singleton: forall (a: A) (x: FSetC A),
a ;; x = x (a ;; ).
Proof.
intro a. hinduction; try (intros; apply set_path2).
@@ -38,22 +38,22 @@ Section properties.
+ apply (ap (fun y => b ;; y) HR).
Defined.
Lemma append_comm {H: Funext}:
Lemma append_comm {H: Funext}:
forall (x1 x2: FSetC A), x1 x2 = x2 x1.
Proof.
hinduction ; try (intros ; apply path_forall ; intro ; apply set_path2).
- intros. symmetry. apply append_nr.
- intros. symmetry. apply append_nr.
- intros a x1 HR x2.
etransitivity.
apply (ap (fun y => a;;y) (HR x2)).
apply (ap (fun y => a;;y) (HR x2)).
transitivity ((x2 x1) (a;;)).
+ apply append_singleton.
+ apply append_singleton.
+ etransitivity.
* symmetry. apply append_assoc.
* simple refine (ap (x2 ) (append_singleton _ _)^).
Defined.
Lemma singleton_idem: forall (a: A),
Lemma singleton_idem: forall (a: A),
{|a|} {|a|} = {|a|}.
Proof.
unfold singleton.