mirror of
https://github.com/nmvdw/HITs-Examples
synced 2025-11-03 15:13:51 +01:00
Clean up trailing whitespaces and an unused definition.
This commit is contained in:
@@ -87,12 +87,12 @@ Section properties.
|
||||
|
||||
Definition well_defined_filter : forall (A : Type) (ϕ : A -> Bool) (X Y : T A),
|
||||
set_eq A X Y -> set_eq A (filter ϕ X) (filter ϕ Y).
|
||||
Proof.
|
||||
Proof.
|
||||
intros A ϕ X Y HXY.
|
||||
simplify.
|
||||
by rewrite HXY.
|
||||
Defined.
|
||||
|
||||
|
||||
Lemma union_comm : forall A (X Y : T A),
|
||||
set_eq A (X ∪ Y) (Y ∪ X).
|
||||
Proof.
|
||||
@@ -151,7 +151,7 @@ Proof. intros a b c Hab Hbc. apply (Hab @ Hbc). Defined.
|
||||
|
||||
Instance View_recursion A : HitRecursion (View A) :=
|
||||
{
|
||||
indTy := _; recTy := forall (P : Type) (HP: IsHSet P) (u : T A -> P), (forall x y : T A, set_eq T (@f) A x y -> u x = u y) -> View A -> P;
|
||||
indTy := _; recTy := forall (P : Type) (HP: IsHSet P) (u : T A -> P), (forall x y : T A, set_eq T (@f) A x y -> u x = u y) -> View A -> P;
|
||||
H_inductor := quotient_ind (R A); H_recursor := @quotient_rec _ (R A) _
|
||||
}.
|
||||
|
||||
@@ -169,7 +169,7 @@ assert (resp1 : forall x y y', set_eq (@f) y y' -> u x y = u x y').
|
||||
assert (resp2 : forall x x' y, set_eq (@f) x x' -> u x y = u x' y).
|
||||
{ intros x x' y Hxx'.
|
||||
apply Hresp. apply Hxx'.
|
||||
reflexivity. }
|
||||
reflexivity. }
|
||||
hrecursion.
|
||||
- intros a.
|
||||
hrecursion.
|
||||
@@ -193,7 +193,7 @@ simple refine (View_rec2 _ _ _ _).
|
||||
apply related_classes_eq.
|
||||
unfold R in *.
|
||||
eapply well_defined_union; eauto.
|
||||
Defined.
|
||||
Defined.
|
||||
|
||||
Ltac reduce :=
|
||||
intros ;
|
||||
|
||||
@@ -8,7 +8,7 @@ Section Operations.
|
||||
Global Instance list_empty A : hasEmpty (list A) := nil.
|
||||
|
||||
Global Instance list_single A: hasSingleton (list A) A := fun a => cons a nil.
|
||||
|
||||
|
||||
Global Instance list_union A : hasUnion (list A).
|
||||
Proof.
|
||||
intros l1 l2.
|
||||
@@ -58,7 +58,7 @@ Section ListToSet.
|
||||
* strip_truncations ; apply (tr (inl z1)).
|
||||
* apply (tr (inr z2)).
|
||||
Defined.
|
||||
|
||||
|
||||
Definition empty_empty : list_to_set A ∅ = ∅ := idpath.
|
||||
|
||||
Lemma filter_comprehension (ϕ : A -> Bool) (l : list A) :
|
||||
@@ -72,7 +72,7 @@ Section ListToSet.
|
||||
* rewrite nl.
|
||||
apply IHl.
|
||||
Defined.
|
||||
|
||||
|
||||
Definition singleton_single (a : A) : list_to_set A (singleton a) = {|a|} :=
|
||||
nr {|a|}.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user