1
0
mirror of https://github.com/nmvdw/HITs-Examples synced 2025-11-03 15:13:51 +01:00

Clean up trailing whitespaces and an unused definition.

This commit is contained in:
2017-08-09 18:05:58 +02:00
parent 31e08af1d1
commit 33808928db
15 changed files with 137 additions and 152 deletions

View File

@@ -87,12 +87,12 @@ Section properties.
Definition well_defined_filter : forall (A : Type) (ϕ : A -> Bool) (X Y : T A),
set_eq A X Y -> set_eq A (filter ϕ X) (filter ϕ Y).
Proof.
Proof.
intros A ϕ X Y HXY.
simplify.
by rewrite HXY.
Defined.
Lemma union_comm : forall A (X Y : T A),
set_eq A (X Y) (Y X).
Proof.
@@ -151,7 +151,7 @@ Proof. intros a b c Hab Hbc. apply (Hab @ Hbc). Defined.
Instance View_recursion A : HitRecursion (View A) :=
{
indTy := _; recTy := forall (P : Type) (HP: IsHSet P) (u : T A -> P), (forall x y : T A, set_eq T (@f) A x y -> u x = u y) -> View A -> P;
indTy := _; recTy := forall (P : Type) (HP: IsHSet P) (u : T A -> P), (forall x y : T A, set_eq T (@f) A x y -> u x = u y) -> View A -> P;
H_inductor := quotient_ind (R A); H_recursor := @quotient_rec _ (R A) _
}.
@@ -169,7 +169,7 @@ assert (resp1 : forall x y y', set_eq (@f) y y' -> u x y = u x y').
assert (resp2 : forall x x' y, set_eq (@f) x x' -> u x y = u x' y).
{ intros x x' y Hxx'.
apply Hresp. apply Hxx'.
reflexivity. }
reflexivity. }
hrecursion.
- intros a.
hrecursion.
@@ -193,7 +193,7 @@ simple refine (View_rec2 _ _ _ _).
apply related_classes_eq.
unfold R in *.
eapply well_defined_union; eauto.
Defined.
Defined.
Ltac reduce :=
intros ;

View File

@@ -8,7 +8,7 @@ Section Operations.
Global Instance list_empty A : hasEmpty (list A) := nil.
Global Instance list_single A: hasSingleton (list A) A := fun a => cons a nil.
Global Instance list_union A : hasUnion (list A).
Proof.
intros l1 l2.
@@ -58,7 +58,7 @@ Section ListToSet.
* strip_truncations ; apply (tr (inl z1)).
* apply (tr (inr z2)).
Defined.
Definition empty_empty : list_to_set A = := idpath.
Lemma filter_comprehension (ϕ : A -> Bool) (l : list A) :
@@ -72,7 +72,7 @@ Section ListToSet.
* rewrite nl.
apply IHl.
Defined.
Definition singleton_single (a : A) : list_to_set A (singleton a) = {|a|} :=
nr {|a|}.