mirror of
https://github.com/nmvdw/HITs-Examples
synced 2026-01-09 00:13:51 +01:00
Clean up trailing whitespaces and an unused definition.
This commit is contained in:
@@ -47,7 +47,7 @@ Proof.
|
||||
destruct (if P a as b return ((b = true) + (b = false))
|
||||
then inl 1%path
|
||||
else inr 1%path) as [Pa' | Pa'].
|
||||
- rewrite Pa' in Pa. contradiction (true_ne_false Pa).
|
||||
- rewrite Pa' in Pa. contradiction (true_ne_false Pa).
|
||||
- reflexivity.
|
||||
Defined.
|
||||
|
||||
@@ -104,7 +104,7 @@ Defined.
|
||||
Lemma enumerated_surj (A B : Type) (f : A -> B) :
|
||||
IsSurjection f -> enumerated A -> enumerated B.
|
||||
Proof.
|
||||
intros Hsurj HeA. strip_truncations; apply tr.
|
||||
intros Hsurj HeA. strip_truncations; apply tr.
|
||||
destruct HeA as [eA HeA].
|
||||
exists (map f eA).
|
||||
intros x. specialize (Hsurj x).
|
||||
@@ -157,7 +157,7 @@ destruct ys as [|y ys].
|
||||
Defined.
|
||||
|
||||
Fixpoint listProd {A B} (xs : list A) (ys : list B) : list (A * B).
|
||||
Proof.
|
||||
Proof.
|
||||
destruct xs as [|x xs].
|
||||
- exact nil.
|
||||
- refine (app _ _).
|
||||
@@ -165,7 +165,7 @@ destruct xs as [|x xs].
|
||||
+ exact (listProd _ _ xs ys).
|
||||
Defined.
|
||||
|
||||
Lemma listExt_prod_sing {A B} (x : A) (y : B) (ys : list B) :
|
||||
Lemma listExt_prod_sing {A B} (x : A) (y : B) (ys : list B) :
|
||||
listExt ys y -> listExt (listProd_sing x ys) (x, y).
|
||||
Proof.
|
||||
induction ys; simpl.
|
||||
@@ -193,11 +193,11 @@ induction xs as [| x' xs]; intros x y.
|
||||
rewrite <- Hyy' in IHxs.
|
||||
apply listExt_app_l. apply IHxs. assumption.
|
||||
simpl. apply tr. left. apply tr. reflexivity.
|
||||
* right.
|
||||
* right.
|
||||
apply listExt_app_l.
|
||||
apply IHxs. assumption.
|
||||
simpl. apply tr. right. assumption.
|
||||
Defined.
|
||||
Defined.
|
||||
|
||||
(** Properties of enumerated sets: closed under products *)
|
||||
Lemma enumerated_prod (A B : Type) `{Funext} :
|
||||
@@ -221,7 +221,7 @@ Section enumerated_fset.
|
||||
| nil => ∅
|
||||
| cons x xs => {|x|} ∪ (list_to_fset xs)
|
||||
end.
|
||||
|
||||
|
||||
Lemma list_to_fset_ext (ls : list A) (a : A):
|
||||
listExt ls a -> a ∈ (list_to_fset ls).
|
||||
Proof.
|
||||
@@ -250,8 +250,8 @@ End enumerated_fset.
|
||||
Section fset_dec_enumerated.
|
||||
Variable A : Type.
|
||||
Context `{Univalence}.
|
||||
|
||||
Definition Kf_fsetc :
|
||||
|
||||
Definition Kf_fsetc :
|
||||
Kf A -> exists (X : FSetC A), forall (a : A), k_finite.map (FSetC_to_FSet X) a.
|
||||
Proof.
|
||||
intros [X HX].
|
||||
@@ -260,7 +260,7 @@ Section fset_dec_enumerated.
|
||||
by rewrite <- HX.
|
||||
Defined.
|
||||
|
||||
Definition merely_enumeration_FSetC :
|
||||
Definition merely_enumeration_FSetC :
|
||||
forall (X : FSetC A),
|
||||
hexists (fun (ls : list A) => forall a, a ∈ (FSetC_to_FSet X) = listExt ls a).
|
||||
Proof.
|
||||
@@ -274,13 +274,13 @@ Section fset_dec_enumerated.
|
||||
- intros. apply path_ishprop.
|
||||
- intros. apply path_ishprop.
|
||||
Defined.
|
||||
|
||||
|
||||
Definition Kf_enumerated : Kf A -> enumerated A.
|
||||
Proof.
|
||||
intros HKf. apply Kf_fsetc in HKf.
|
||||
destruct HKf as [X HX].
|
||||
pose (ls' := (merely_enumeration_FSetC X)).
|
||||
simple refine (@Trunc_rec _ _ _ _ _ ls'). clear ls'.
|
||||
pose (ls' := (merely_enumeration_FSetC X)).
|
||||
simple refine (@Trunc_rec _ _ _ _ _ ls'). clear ls'.
|
||||
intros [ls Hls].
|
||||
apply tr. exists ls.
|
||||
intros a. rewrite <- Hls. apply (HX a).
|
||||
@@ -293,7 +293,7 @@ Section subobjects.
|
||||
|
||||
Definition enumeratedS (P : Sub A) : hProp :=
|
||||
enumerated (sigT P).
|
||||
|
||||
|
||||
Lemma enumeratedS_empty : closedEmpty enumeratedS.
|
||||
Proof.
|
||||
unfold enumeratedS.
|
||||
@@ -319,7 +319,7 @@ Section subobjects.
|
||||
- apply (cons (x; tr (inr Hx))).
|
||||
apply (weaken_list_r _ _ ls).
|
||||
Defined.
|
||||
|
||||
|
||||
Lemma listExt_weaken (P Q : Sub A) (ls : list (sigT Q)) (x : A) (Hx : Q x) :
|
||||
listExt ls (x; Hx) -> listExt (weaken_list_r P Q ls) (x; tr (inr Hx)).
|
||||
Proof.
|
||||
@@ -333,7 +333,7 @@ Section subobjects.
|
||||
exists (Hxy..1). apply path_ishprop.
|
||||
+ right. apply IHls. assumption.
|
||||
Defined.
|
||||
|
||||
|
||||
Fixpoint concatD {P Q : Sub A}
|
||||
(ls : list (sigT P)) (ls' : list (sigT Q)) : list (sigT (max_L P Q)).
|
||||
Proof.
|
||||
@@ -382,9 +382,9 @@ Section subobjects.
|
||||
Defined.
|
||||
|
||||
Opaque enumeratedS.
|
||||
Definition FSet_to_enumeratedS :
|
||||
Definition FSet_to_enumeratedS :
|
||||
forall (X : FSet A), enumeratedS (k_finite.map X).
|
||||
Proof.
|
||||
Proof.
|
||||
hinduction.
|
||||
- apply enumeratedS_empty.
|
||||
- intros a. apply enumeratedS_singleton.
|
||||
|
||||
@@ -100,7 +100,7 @@ Section structure_k_finite.
|
||||
exists {|a|}.
|
||||
cbn.
|
||||
apply path_forall.
|
||||
intro z.
|
||||
intro z.
|
||||
reflexivity.
|
||||
Defined.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user