mirror of
				https://github.com/nmvdw/HITs-Examples
				synced 2025-11-04 07:33:51 +01:00 
			
		
		
		
	Clean up trailing whitespaces and an unused definition.
This commit is contained in:
		@@ -47,7 +47,7 @@ Proof.
 | 
			
		||||
  destruct (if P a as b return ((b = true) + (b = false))
 | 
			
		||||
     then inl 1%path
 | 
			
		||||
     else inr 1%path) as [Pa' | Pa'].
 | 
			
		||||
  - rewrite Pa' in Pa. contradiction (true_ne_false Pa). 
 | 
			
		||||
  - rewrite Pa' in Pa. contradiction (true_ne_false Pa).
 | 
			
		||||
  - reflexivity.
 | 
			
		||||
Defined.
 | 
			
		||||
 | 
			
		||||
@@ -104,7 +104,7 @@ Defined.
 | 
			
		||||
Lemma enumerated_surj (A B : Type) (f : A -> B) :
 | 
			
		||||
  IsSurjection f -> enumerated A -> enumerated B.
 | 
			
		||||
Proof.
 | 
			
		||||
  intros Hsurj HeA. strip_truncations; apply tr. 
 | 
			
		||||
  intros Hsurj HeA. strip_truncations; apply tr.
 | 
			
		||||
  destruct HeA as [eA HeA].
 | 
			
		||||
  exists (map f eA).
 | 
			
		||||
  intros x. specialize (Hsurj x).
 | 
			
		||||
@@ -157,7 +157,7 @@ destruct ys as [|y ys].
 | 
			
		||||
Defined.
 | 
			
		||||
 | 
			
		||||
Fixpoint listProd {A B} (xs : list A) (ys : list B) : list (A * B).
 | 
			
		||||
Proof.  
 | 
			
		||||
Proof.
 | 
			
		||||
destruct xs as [|x xs].
 | 
			
		||||
- exact nil.
 | 
			
		||||
- refine (app _ _).
 | 
			
		||||
@@ -165,7 +165,7 @@ destruct xs as [|x xs].
 | 
			
		||||
  + exact (listProd _ _ xs ys).
 | 
			
		||||
Defined.
 | 
			
		||||
 | 
			
		||||
Lemma listExt_prod_sing {A B} (x : A) (y : B) (ys : list B) : 
 | 
			
		||||
Lemma listExt_prod_sing {A B} (x : A) (y : B) (ys : list B) :
 | 
			
		||||
  listExt ys y -> listExt (listProd_sing x ys) (x, y).
 | 
			
		||||
Proof.
 | 
			
		||||
induction ys; simpl.
 | 
			
		||||
@@ -193,11 +193,11 @@ induction xs as [| x' xs]; intros x y.
 | 
			
		||||
      rewrite <- Hyy' in IHxs.
 | 
			
		||||
      apply listExt_app_l. apply IHxs. assumption.
 | 
			
		||||
      simpl. apply tr. left. apply tr. reflexivity.
 | 
			
		||||
    * right. 
 | 
			
		||||
    * right.
 | 
			
		||||
      apply listExt_app_l.
 | 
			
		||||
      apply IHxs. assumption.
 | 
			
		||||
      simpl. apply tr. right. assumption.
 | 
			
		||||
Defined.      
 | 
			
		||||
Defined.
 | 
			
		||||
 | 
			
		||||
(** Properties of enumerated sets: closed under products *)
 | 
			
		||||
Lemma enumerated_prod (A B : Type) `{Funext} :
 | 
			
		||||
@@ -221,7 +221,7 @@ Section enumerated_fset.
 | 
			
		||||
    | nil => ∅
 | 
			
		||||
    | cons x xs => {|x|} ∪ (list_to_fset xs)
 | 
			
		||||
    end.
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  Lemma list_to_fset_ext (ls : list A) (a : A):
 | 
			
		||||
    listExt ls a -> a ∈ (list_to_fset ls).
 | 
			
		||||
  Proof.
 | 
			
		||||
@@ -250,8 +250,8 @@ End enumerated_fset.
 | 
			
		||||
Section fset_dec_enumerated.
 | 
			
		||||
  Variable A : Type.
 | 
			
		||||
  Context `{Univalence}.
 | 
			
		||||
 
 | 
			
		||||
  Definition Kf_fsetc : 
 | 
			
		||||
 | 
			
		||||
  Definition Kf_fsetc :
 | 
			
		||||
    Kf A -> exists (X : FSetC A), forall (a : A), k_finite.map (FSetC_to_FSet X) a.
 | 
			
		||||
  Proof.
 | 
			
		||||
    intros [X HX].
 | 
			
		||||
@@ -260,7 +260,7 @@ Section fset_dec_enumerated.
 | 
			
		||||
    by rewrite <- HX.
 | 
			
		||||
  Defined.
 | 
			
		||||
 | 
			
		||||
  Definition merely_enumeration_FSetC : 
 | 
			
		||||
  Definition merely_enumeration_FSetC :
 | 
			
		||||
    forall (X : FSetC A),
 | 
			
		||||
    hexists (fun (ls : list A) => forall a, a ∈ (FSetC_to_FSet X) = listExt ls a).
 | 
			
		||||
  Proof.
 | 
			
		||||
@@ -274,13 +274,13 @@ Section fset_dec_enumerated.
 | 
			
		||||
    - intros. apply path_ishprop.
 | 
			
		||||
    - intros. apply path_ishprop.
 | 
			
		||||
  Defined.
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  Definition Kf_enumerated : Kf A -> enumerated A.
 | 
			
		||||
  Proof.
 | 
			
		||||
    intros HKf. apply Kf_fsetc in HKf.
 | 
			
		||||
    destruct HKf as [X HX].
 | 
			
		||||
    pose (ls' := (merely_enumeration_FSetC X)).    
 | 
			
		||||
    simple refine (@Trunc_rec _ _ _ _ _ ls'). clear ls'.    
 | 
			
		||||
    pose (ls' := (merely_enumeration_FSetC X)).
 | 
			
		||||
    simple refine (@Trunc_rec _ _ _ _ _ ls'). clear ls'.
 | 
			
		||||
    intros [ls Hls].
 | 
			
		||||
    apply tr. exists ls.
 | 
			
		||||
    intros a. rewrite <- Hls. apply (HX a).
 | 
			
		||||
@@ -293,7 +293,7 @@ Section subobjects.
 | 
			
		||||
 | 
			
		||||
  Definition enumeratedS (P : Sub A) : hProp :=
 | 
			
		||||
    enumerated (sigT P).
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  Lemma enumeratedS_empty : closedEmpty enumeratedS.
 | 
			
		||||
  Proof.
 | 
			
		||||
    unfold enumeratedS.
 | 
			
		||||
@@ -319,7 +319,7 @@ Section subobjects.
 | 
			
		||||
    - apply (cons (x; tr (inr Hx))).
 | 
			
		||||
      apply (weaken_list_r _ _ ls).
 | 
			
		||||
  Defined.
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
  Lemma listExt_weaken (P Q : Sub A) (ls : list (sigT Q)) (x : A) (Hx : Q x) :
 | 
			
		||||
    listExt ls (x; Hx) -> listExt (weaken_list_r P Q ls) (x; tr (inr Hx)).
 | 
			
		||||
  Proof.
 | 
			
		||||
@@ -333,7 +333,7 @@ Section subobjects.
 | 
			
		||||
        exists (Hxy..1). apply path_ishprop.
 | 
			
		||||
      + right. apply IHls. assumption.
 | 
			
		||||
  Defined.
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  Fixpoint concatD {P Q : Sub A}
 | 
			
		||||
    (ls : list (sigT P)) (ls' : list (sigT Q)) : list (sigT (max_L P Q)).
 | 
			
		||||
  Proof.
 | 
			
		||||
@@ -382,9 +382,9 @@ Section subobjects.
 | 
			
		||||
  Defined.
 | 
			
		||||
 | 
			
		||||
  Opaque enumeratedS.
 | 
			
		||||
  Definition FSet_to_enumeratedS : 
 | 
			
		||||
  Definition FSet_to_enumeratedS :
 | 
			
		||||
    forall (X : FSet A), enumeratedS (k_finite.map X).
 | 
			
		||||
  Proof.  
 | 
			
		||||
  Proof.
 | 
			
		||||
    hinduction.
 | 
			
		||||
    - apply enumeratedS_empty.
 | 
			
		||||
    - intros a. apply enumeratedS_singleton.
 | 
			
		||||
 
 | 
			
		||||
@@ -100,7 +100,7 @@ Section structure_k_finite.
 | 
			
		||||
    exists {|a|}.
 | 
			
		||||
    cbn.
 | 
			
		||||
    apply path_forall.
 | 
			
		||||
    intro z. 
 | 
			
		||||
    intro z.
 | 
			
		||||
    reflexivity.
 | 
			
		||||
  Defined.
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user