mirror of https://github.com/nmvdw/HITs-Examples
No singletons if the underlying type isnt a set
This commit is contained in:
parent
8a1405a1d8
commit
431e1b1048
|
@ -247,6 +247,53 @@ End finite_hott.
|
||||||
|
|
||||||
Arguments Bfin {_} _.
|
Arguments Bfin {_} _.
|
||||||
|
|
||||||
|
Section Bfin_not_set.
|
||||||
|
Definition S1toSig (x : S1) : {x : S1 & merely(x = base)}.
|
||||||
|
Proof.
|
||||||
|
exists x.
|
||||||
|
simple refine (S1_ind (fun z => merely(z = base)) _ _ x) ; simpl.
|
||||||
|
- apply (tr idpath).
|
||||||
|
- apply path_ishprop.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Instance S1toSig_equiv : IsEquiv S1toSig.
|
||||||
|
Proof.
|
||||||
|
apply isequiv_biinv.
|
||||||
|
split.
|
||||||
|
- exists (fun x => x.1).
|
||||||
|
simple refine (S1_ind _ _ _) ; simpl.
|
||||||
|
* reflexivity.
|
||||||
|
* rewrite transport_paths_FlFr.
|
||||||
|
hott_simpl.
|
||||||
|
- exists (fun x => x.1).
|
||||||
|
intros [z x].
|
||||||
|
simple refine (path_sigma _ _ _ _ _) ; simpl.
|
||||||
|
* reflexivity.
|
||||||
|
* apply path_ishprop.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Context `{Univalence}.
|
||||||
|
|
||||||
|
Theorem no_singleton (Hsing : Bfin {|base|}) : Empty.
|
||||||
|
Proof.
|
||||||
|
destruct Hsing as [n equiv].
|
||||||
|
strip_truncations.
|
||||||
|
assert (S1 <~> Fin n) as X.
|
||||||
|
{ apply (equiv_compose equiv S1toSig). }
|
||||||
|
assert (IsHSet S1) as X1.
|
||||||
|
{
|
||||||
|
rewrite (path_universe X).
|
||||||
|
apply _.
|
||||||
|
}
|
||||||
|
enough (idpath = loop).
|
||||||
|
- assert (S1_encode _ idpath = S1_encode _ (loopexp loop (pos Int.one))) as H' by f_ap.
|
||||||
|
rewrite S1_encode_loopexp in H'. simpl in H'. symmetry in H'.
|
||||||
|
apply (pos_neq_zero H').
|
||||||
|
- apply set_path2.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
End Bfin_not_set.
|
||||||
|
|
||||||
Section dec_membership.
|
Section dec_membership.
|
||||||
Variable (A : Type).
|
Variable (A : Type).
|
||||||
Context `{DecidablePaths A} `{Univalence}.
|
Context `{DecidablePaths A} `{Univalence}.
|
||||||
|
|
Loading…
Reference in New Issue