1
0
mirror of https://github.com/nmvdw/HITs-Examples synced 2025-11-03 23:23:51 +01:00

A negligible change in the structure

This commit is contained in:
Niels
2017-09-07 15:19:48 +02:00
parent 4ab70ae1fe
commit 474c9324ca
29 changed files with 2082 additions and 1459 deletions

View File

@@ -0,0 +1,78 @@
Require Import HoTT.
Require Import disjunction lattice notation plumbing.
Section subobjects.
Variable A : Type.
Definition Sub := A -> hProp.
Global Instance sub_empty : hasEmpty Sub := fun _ => False_hp.
Global Instance sub_union : hasUnion Sub := max_fun.
Global Instance sub_intersection : hasIntersection Sub := min_fun.
Global Instance sub_singleton : hasSingleton Sub A
:= fun a b => BuildhProp (Trunc (-1) (b = a)).
Global Instance sub_membership : hasMembership Sub A := fun a X => X a.
Global Instance sub_comprehension : hasComprehension Sub A
:= fun ϕ X a => BuildhProp (X a * (ϕ a = true)).
Global Instance sub_subset `{Univalence} : hasSubset Sub
:= fun X Y => BuildhProp (forall a, X a -> Y a).
End subobjects.
Section sub_classes.
Context {A : Type}.
Variable C : (A -> hProp) -> hProp.
Context `{Univalence}.
Instance subobject_lattice : Lattice (Sub A).
Proof.
apply _.
Defined.
Definition closedUnion := forall X Y, C X -> C Y -> C (X Y).
Definition closedIntersection := forall X Y, C X -> C Y -> C (X Y).
Definition closedEmpty := C .
Definition closedSingleton := forall a, C {|a|}.
Definition hasDecidableEmpty := forall X, C X -> hor (X = ) (hexists (fun a => a X)).
End sub_classes.
Section isIn.
Variable A : Type.
Variable C : (A -> hProp) -> hProp.
Context `{Univalence}.
Context {HS : closedSingleton C} {HIn : forall X, C X -> forall a, Decidable (X a)}.
Theorem decidable_A_isIn (a b : A) : Decidable (Trunc (-1) (b = a)).
Proof.
destruct (HIn {|a|} (HS a) b).
- apply (inl t).
- refine (inr(fun p => _)).
strip_truncations.
contradiction (n (tr p)).
Defined.
End isIn.
Section intersect.
Variable A : Type.
Variable C : (Sub A) -> hProp.
Context `{Univalence}
{HI : closedIntersection C} {HE : closedEmpty C}
{HS : closedSingleton C} {HDE : hasDecidableEmpty C}.
Theorem decidable_A_intersect (a b : A) : Decidable (Trunc (-1) (b = a)).
Proof.
unfold Decidable.
pose (HI {|a|} {|b|} (HS a) (HS b)) as IntAB.
pose (HDE ({|a|} {|b|}) IntAB) as IntE.
refine (Trunc_rec _ IntE) ; intros [p | p].
- refine (inr(fun q => _)).
strip_truncations.
refine (transport (fun Z => a Z) p (tr idpath, tr q^)).
- strip_truncations.
destruct p as [? [t1 t2]].
strip_truncations.
apply (inl (tr (t2^ @ t1))).
Defined.
End intersect.

View File

@@ -0,0 +1,514 @@
(* Bishop-finiteness is that "default" notion of finiteness in the HoTT library *)
Require Import HoTT HitTactics.
Require Import sub subobjects.k_finite FSets prelude.
Section finite_hott.
Variable (A : Type).
Context `{Univalence}.
(* A subobject is B-finite if its extension is B-finite as a type *)
Definition Bfin (X : Sub A) : hProp := BuildhProp (Finite {a : A & a X}).
Global Instance singleton_contr a `{IsHSet A} : Contr {b : A & b {|a|}}.
Proof.
exists (a; tr idpath).
intros [b p].
simple refine (Trunc_ind (fun p => (a; tr 1%path) = (b; p)) _ p).
clear p; intro p. simpl.
apply path_sigma_hprop; simpl.
apply p^.
Defined.
Definition singleton_fin_equiv' a : Fin 1 -> {b : A & b {|a|}}.
Proof.
intros _. apply (a; tr idpath).
Defined.
Global Instance singleton_fin_equiv a `{IsHSet A} : IsEquiv (singleton_fin_equiv' a).
Proof. apply _. Defined.
Definition singleton `{IsHSet A} : closedSingleton Bfin.
Proof.
intros a.
simple refine (Build_Finite _ 1 _).
apply tr.
symmetry.
refine (BuildEquiv _ _ (singleton_fin_equiv' a) _).
Defined.
Definition empty_finite : closedEmpty Bfin.
Proof.
simple refine (Build_Finite _ 0 _).
apply tr.
simple refine (BuildEquiv _ _ _ _).
intros [a p]; apply p.
Defined.
Definition decidable_empty_finite : hasDecidableEmpty Bfin.
Proof.
intros X Y.
destruct Y as [n f].
strip_truncations.
destruct n.
- refine (tr(inl _)).
apply path_forall. intro z.
apply path_iff_hprop.
* intros p.
contradiction (f (z;p)).
* contradiction.
- refine (tr(inr _)).
apply (tr(f^-1(inr tt))).
Defined.
Lemma no_union `{IsHSet A}
(f : forall (X Y : Sub A),
Bfin X -> Bfin Y -> Bfin (X Y))
(a b : A) :
hor (a = b) (a = b -> Empty).
Proof.
specialize (f {|a|} {|b|} (singleton a) (singleton b)).
unfold Bfin in f.
destruct f as [n pn].
strip_truncations.
destruct pn as [f [g fg gf _]].
destruct n as [|n].
unfold Sect in *.
- contradiction f.
exists a. apply (tr(inl(tr idpath))).
- destruct n as [|n].
+ (* If the size of the union is 1, then (a = b) *)
refine (tr (inl _)).
pose (s1 := (a;tr(inl(tr idpath)))
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
pose (s2 := (b;tr(inr(tr idpath)))
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
refine (ap (fun x => x.1) (gf s1)^ @ _ @ (ap (fun x => x.1) (gf s2))).
assert (fs_eq : f s1 = f s2).
{ by apply path_ishprop. }
refine (ap (fun x => (g x).1) fs_eq).
+ (* Otherwise, ¬(a = b) *)
refine (tr (inr _)).
intros p.
pose (s1 := inl (inr tt) : Fin n + Unit + Unit).
pose (s2 := inr tt : Fin n + Unit + Unit).
pose (gs1 := g s1).
pose (c := g s1).
pose (gs2 := g s2).
pose (d := g s2).
assert (Hgs1 : gs1 = c) by reflexivity.
assert (Hgs2 : gs2 = d) by reflexivity.
destruct c as [x px'].
destruct d as [y py'].
simple refine (Trunc_ind _ _ px') ; intros px.
simple refine (Trunc_ind _ _ py') ; intros py.
simpl.
cut (x = y).
{
enough (s1 = s2) as X.
{
intros.
unfold s1, s2 in X.
refine (not_is_inl_and_inr' (inl(inr tt)) _ _).
+ apply tt.
+ rewrite X ; apply tt.
}
transitivity (f gs1).
{ apply (fg s1)^. }
symmetry ; transitivity (f gs2).
{ apply (fg s2)^. }
rewrite Hgs1, Hgs2.
f_ap.
simple refine (path_sigma _ _ _ _ _); [ | apply path_ishprop ]; simpl.
destruct px as [p1 | p1] ; destruct py as [p2 | p2] ; strip_truncations.
* apply (p2 @ p1^).
* refine (p2 @ _^ @ p1^). auto.
* refine (p2 @ _ @ p1^). auto.
* apply (p2 @ p1^).
}
destruct px as [px | px] ; destruct py as [py | py]; strip_truncations.
** apply (px @ py^).
** refine (px @ _ @ py^). auto.
** refine (px @ _ @ py^). symmetry. auto.
** apply (px @ py^).
Defined.
End finite_hott.
Section empty.
Variable (A : Type).
Variable (X : A -> hProp)
(Xequiv : {a : A & a X} <~> Fin 0).
Context `{Univalence}.
Lemma X_empty : X = .
Proof.
apply path_forall.
intro z.
apply path_iff_hprop ; try contradiction.
intro x.
destruct Xequiv as [f fequiv].
contradiction (f(z;x)).
Defined.
End empty.
Section split.
Context `{Univalence}.
Variable (A : Type).
Variable (P : A -> hProp)
(n : nat)
(f : {a : A & P a } <~> Fin n + Unit).
Definition split : exists P' : Sub A, exists b : A,
({a : A & P' a} <~> Fin n) * (forall x, P x = (P' x merely (x = b))).
Proof.
pose (fun x : A => sig (fun y : Fin n => x = (f^-1 (inl y)).1)) as P'.
assert (forall x, IsHProp (P' x)).
{
intros a. unfold P'.
apply hprop_allpath.
intros [x px] [y py].
pose (p := px^ @ py).
assert (p2 : p # (f^-1 (inl x)).2 = (f^-1 (inl y)).2).
{ apply path_ishprop. }
simple refine (path_sigma' _ _ _).
- apply path_sum_inl with Unit.
refine (transport (fun z => z = inl y) (eisretr f (inl x)) _).
refine (transport (fun z => _ = z) (eisretr f (inl y)) _).
apply (ap f).
apply path_sigma_hprop. apply p.
- rewrite transport_paths_FlFr.
hott_simpl; cbn.
rewrite ap_compose.
rewrite (ap_compose inl f^-1).
rewrite ap_inl_path_sum_inl.
repeat (rewrite transport_paths_FlFr; hott_simpl).
rewrite !ap_pp.
rewrite ap_V.
rewrite <- !other_adj.
rewrite <- (ap_compose f (f^-1)).
rewrite ap_equiv.
rewrite !ap_pp.
rewrite ap_pr1_path_sigma_hprop.
rewrite !concat_pp_p.
rewrite !ap_V.
rewrite concat_Vp.
rewrite (concat_p_pp (ap pr1 (eissect f (f^-1 (inl x))))^).
rewrite concat_Vp.
hott_simpl. }
exists (fun a => BuildhProp (P' a)).
exists (f^-1 (inr tt)).1.
split.
{ unshelve eapply BuildEquiv.
{ refine (fun x => x.2.1). }
apply isequiv_biinv.
unshelve esplit;
exists (fun x => (((f^-1 (inl x)).1; (x; idpath)))).
- intros [a [y p]]; cbn.
eapply path_sigma with p^.
apply path_ishprop.
- intros x; cbn.
reflexivity. }
{ intros a.
unfold P'.
apply path_iff_hprop.
- intros Ha.
pose (y := f (a;Ha)).
assert (Hy : y = f (a; Ha)) by reflexivity.
destruct y as [y | []].
+ refine (tr (inl _)).
exists y.
rewrite Hy.
by rewrite eissect.
+ refine (tr (inr (tr _))).
rewrite Hy.
by rewrite eissect.
- intros Hstuff.
strip_truncations.
destruct Hstuff as [[y Hy] | Ha].
+ rewrite Hy.
apply (f^-1 (inl y)).2.
+ strip_truncations.
rewrite Ha.
apply (f^-1 (inr tt)).2. }
Defined.
End split.
Arguments Bfin {_} _.
Arguments split {_} {_} _ _ _.
Section Bfin_no_singletons.
Definition S1toSig (x : S1) : {x : S1 & merely(x = base)}.
Proof.
exists x.
simple refine (S1_ind (fun z => merely(z = base)) _ _ x) ; simpl.
- apply (tr idpath).
- apply path_ishprop.
Defined.
Instance S1toSig_equiv : IsEquiv S1toSig.
Proof.
apply isequiv_biinv.
split.
- exists (fun x => x.1).
simple refine (S1_ind _ _ _) ; simpl.
* reflexivity.
* rewrite transport_paths_FlFr.
hott_simpl.
- exists (fun x => x.1).
intros [z x].
simple refine (path_sigma _ _ _ _ _) ; simpl.
* reflexivity.
* apply path_ishprop.
Defined.
Theorem no_singleton `{Univalence} (Hsing : Bfin {|base|}) : Empty.
Proof.
destruct Hsing as [n equiv].
strip_truncations.
assert (S1 <~> Fin n) as X.
{ apply (equiv_compose equiv S1toSig). }
assert (IsHSet S1) as X1.
{
rewrite (path_universe X).
apply _.
}
enough (idpath = loop).
- assert (S1_encode _ idpath = S1_encode _ (loopexp loop (pos Int.one))) as H' by f_ap.
rewrite S1_encode_loopexp in H'. simpl in H'. symmetry in H'.
apply (pos_neq_zero H').
- apply set_path2.
Defined.
End Bfin_no_singletons.
(* If A has decidable equality, then every Bfin subobject has decidable membership *)
Section dec_membership.
Variable (A : Type).
Context `{DecidablePaths A} `{Univalence}.
Global Instance DecidableMembership (P : Sub A) (Hfin : Bfin P) (a : A) :
Decidable (a P).
Proof.
destruct Hfin as [n Hequiv].
strip_truncations.
revert Hequiv.
revert P.
induction n.
- intros.
pose (X_empty _ P Hequiv) as p.
rewrite p.
apply _.
- intros.
destruct (split P n Hequiv) as
(P' & b & HP' & HP).
unfold member, sub_membership.
rewrite (HP a).
destruct (IHn P' HP') as [IH | IH].
+ left. apply (tr (inl IH)).
+ destruct (dec (a = b)) as [Hab | Hab].
left. apply (tr (inr (tr Hab))).
right. intros α. strip_truncations.
destruct α as [? | ?]; [ | strip_truncations]; contradiction.
Defined.
End dec_membership.
Section bfin_kfin.
Context `{Univalence}.
Lemma bfin_to_kfin : forall (B : Type), Finite B -> Kf B.
Proof.
apply finite_ind_hprop.
- intros. apply _.
- apply Kf_unfold.
exists . intros [].
- intros B [n f] IH.
strip_truncations.
apply Kf_unfold in IH.
destruct IH as [X HX].
apply Kf_unfold.
exists ((fmap FSet inl X) {|inr tt|}); simpl.
intros [a | []]; apply tr.
+ left.
apply fmap_isIn.
apply (HX a).
+ right. apply (tr idpath).
Defined.
Definition bfin_to_kfin_sub A : forall (P : Sub A), Bfin P -> Kf_sub _ P.
Proof.
intros P [n f].
strip_truncations.
revert f. revert P.
induction n; intros P f.
- exists .
apply path_forall; intro a; simpl.
apply path_iff_hprop; [ | contradiction ].
intros p.
apply (f (a;p)).
- destruct (split P n f) as
(P' & b & HP' & HP).
destruct (IHn P' HP') as [Y HY].
exists (Y {|b|}).
apply path_forall; intro a. simpl.
rewrite <- HY.
apply HP.
Defined.
End bfin_kfin.
Section kfin_bfin.
Variable (A : Type).
Context `{DecidablePaths A} `{Univalence}.
Lemma bfin_union : @closedUnion A Bfin.
Proof.
intros X Y HX HY.
destruct HX as [n fX].
strip_truncations.
revert fX. revert X.
induction n; intros X fX.
- destruct HY as [m fY]. strip_truncations.
exists m. apply tr.
transitivity {a : A & a Y}; [ | assumption ].
apply equiv_functor_sigma_id.
intros a.
apply equiv_iff_hprop.
* intros Ha. strip_truncations.
destruct Ha as [Ha | Ha]; [ | apply Ha ].
contradiction (fX (a;Ha)).
* intros Ha. apply tr. by right.
- destruct (split X n fX) as
(X' & b & HX' & HX).
assert (Bfin X') by (eexists; apply (tr HX')).
destruct (dec (b X')) as [HX'b | HX'b].
+ cut (X Y = X' Y).
{ intros HXY. rewrite HXY.
by apply IHn. }
apply path_forall. intro a.
apply path_iff_hprop.
* intros Ha.
strip_truncations.
destruct Ha as [HXa | HYa]; [ | apply tr; by right ].
rewrite HX in HXa.
strip_truncations.
destruct HXa as [HX'a | Hab];
[ | strip_truncations ]; apply tr; left.
** done.
** rewrite Hab. apply HX'b.
* intros Ha.
strip_truncations. apply tr.
destruct Ha as [HXa | HYa]; [ left | by right ].
rewrite HX. apply (tr (inl HXa)).
+ (* b ∉ X' *)
destruct (IHn X' HX') as [n' fw].
strip_truncations.
destruct (dec (b Y)) as [HYb | HYb].
{ exists n'. apply tr.
transitivity {a : A & a X' Y}; [ | apply fw ].
apply equiv_functor_sigma_id. intro a.
apply equiv_iff_hprop; cbn; simple refine (Trunc_rec _).
{ intros [HXa | HYa].
- rewrite HX in HXa.
strip_truncations.
destruct HXa as [HX'a | Hab]; apply tr.
* by left.
* right. strip_truncations.
rewrite Hab. apply HYb.
- apply tr. by right. }
{ intros [HX'a | HYa]; apply tr.
* left. rewrite HX.
apply (tr (inl HX'a)).
* by right. } }
{ exists (n'.+1).
apply tr.
unshelve eapply BuildEquiv.
{ intros [a Ha]. cbn in Ha.
destruct (dec (BuildhProp (a = b))) as [Hab | Hab].
- right. apply tt.
- left. refine (fw (a;_)).
strip_truncations. apply tr.
destruct Ha as [HXa | HYa].
+ left. rewrite HX in HXa.
strip_truncations.
destruct HXa as [HX'a | Hab']; [apply HX'a |].
strip_truncations. contradiction.
+ right. apply HYa. }
{ apply isequiv_biinv.
unshelve esplit; cbn.
- unshelve eexists.
+ intros [m | []].
* destruct (fw^-1 m) as [a Ha].
exists a.
strip_truncations. apply tr.
destruct Ha as [HX'a | HYa]; [ left | by right ].
rewrite HX.
apply (tr (inl HX'a)).
* exists b.
rewrite HX.
apply (tr (inl (tr (inr (tr idpath))))).
+ intros [a Ha]; cbn.
strip_truncations.
simple refine (path_sigma' _ _ _); [ | apply path_ishprop ].
destruct (H a b); cbn.
* apply p^.
* rewrite eissect; cbn.
reflexivity.
- unshelve eexists. (* TODO: Duplication!! *)
+ intros [m | []].
* exists (fw^-1 m).1.
simple refine (Trunc_rec _ (fw^-1 m).2).
intros [HX'a | HYa]; apply tr; [ left | by right ].
rewrite HX.
apply (tr (inl HX'a)).
* exists b.
rewrite HX.
apply (tr (inl (tr (inr (tr idpath))))).
+ intros [m | []]; cbn.
destruct (dec (_ = b)) as [Hb | Hb]; cbn.
{ destruct (fw^-1 m) as [a Ha]. simpl in Hb.
simple refine (Trunc_rec _ Ha). clear Ha.
rewrite Hb.
intros [HX'b2 | HYb2]; contradiction. }
{ f_ap. transitivity (fw (fw^-1 m)).
- f_ap.
apply path_sigma' with idpath.
apply path_ishprop.
- apply eisretr. }
destruct (dec (b = b)); [ reflexivity | contradiction ]. } }
Defined.
Definition FSet_to_Bfin : forall (X : FSet A), Bfin (map X).
Proof.
hinduction; try (intros; apply path_ishprop).
- exists 0. apply tr. simpl.
simple refine (BuildEquiv _ _ _ _).
destruct 1 as [? []].
- intros a.
exists 1. apply tr. simpl.
transitivity Unit; [ | symmetry; apply sum_empty_l ].
unshelve esplit.
+ exact (fun _ => tt).
+ apply isequiv_biinv. split.
* exists (fun _ => (a; tr(idpath))).
intros [b Hb]. strip_truncations.
apply path_sigma' with Hb^.
apply path_ishprop.
* exists (fun _ => (a; tr(idpath))).
intros []. reflexivity.
- intros Y1 Y2 HY1 HY2.
apply bfin_union; auto.
Defined.
End kfin_bfin.
Instance Kf_to_Bf (X : Type) `{Univalence} `{DecidablePaths X} (Hfin : Kf X) : Finite X.
Proof.
apply Kf_unfold in Hfin.
destruct Hfin as [Y HY].
pose (X' := FSet_to_Bfin _ Y).
unfold Bfin in X'.
simple refine (finite_equiv' _ _ X').
unshelve esplit.
- intros [a ?]. apply a.
- apply isequiv_biinv. split.
* exists (fun a => (a;HY a)).
intros [b Hb].
apply path_sigma' with idpath.
apply path_ishprop.
* exists (fun a => (a;HY a)).
intros b. reflexivity.
Defined.

View File

@@ -0,0 +1,452 @@
(* Enumerated finite sets *)
Require Import HoTT HitTactics.
Require Import sub prelude FSets list_representation subobjects.k_finite
list_representation.isomorphism
lattice_interface lattice_examples.
Fixpoint listExt {A} (ls : list A) : Sub A := fun x =>
match ls with
| nil => False_hp
| cons a ls' => BuildhProp (Trunc (-1) (x = a)) listExt ls' x
end.
Fixpoint map {A B} (f : A -> B) (ls : list A) : list B :=
match ls with
| nil => nil
| cons x xs => cons (f x) (map f xs)
end.
Fixpoint filterD {A} (P : A -> Bool) (ls : list A) : list { x : A | P x = true }.
Proof.
destruct ls as [|x xs].
- exact nil.
- enough ((P x = true) + (P x = false)) as HP.
{ destruct HP as [HP | HP].
+ refine (cons (exist _ x HP) (filterD _ P xs)).
+ refine (filterD _ P xs).
}
{ destruct (P x); [left | right]; reflexivity. }
Defined.
Lemma filterD_cons {A} (P : A -> Bool) (a : A) (ls : list A) (Pa : P a = true) :
filterD P (cons a ls) = cons (a;Pa) (filterD P ls).
Proof.
simpl.
destruct (if P a as b return ((b = true) + (b = false))
then inl 1%path
else inr 1%path) as [Pa' | Pa'].
- rewrite (set_path2 Pa Pa'). reflexivity.
- rewrite Pa in Pa'. contradiction (true_ne_false Pa').
Defined.
Lemma filterD_cons_no {A} (P : A -> Bool) (a : A) (ls : list A) (Pa : P a = false) :
filterD P (cons a ls) = filterD P ls.
Proof.
simpl.
destruct (if P a as b return ((b = true) + (b = false))
then inl 1%path
else inr 1%path) as [Pa' | Pa'].
- rewrite Pa' in Pa. contradiction (true_ne_false Pa).
- reflexivity.
Defined.
Lemma filterD_lookup {A} (P : A -> Bool) (x : A) (ls : list A) (Px : P x = true) :
listExt ls x -> listExt (filterD P ls) (x;Px).
Proof.
induction ls as [| a ls].
- simpl. exact idmap.
- assert ((P a = true) + (P a = false)) as HPA.
{ destruct (P a); [left | right]; reflexivity. }
destruct HPA as [Pa | Pa].
+ rewrite (filterD_cons P a ls Pa). simpl.
simple refine (Trunc_ind _ _). intros [Hxa | HIH]; apply tr.
* left. strip_truncations.
apply tr.
apply path_sigma' with Hxa.
apply set_path2.
* right. apply (IHls HIH).
+ rewrite (filterD_cons_no P a ls Pa). simpl.
simple refine (Trunc_ind _ _). intros [Hxa | HIH].
* strip_truncations.
rewrite <- Hxa in Pa. rewrite Px in Pa.
contradiction (true_ne_false Pa).
* apply IHls. apply HIH.
Defined.
(** Definition of finite sets in an enumerated sense *)
Definition enumerated (A : Type) : hProp :=
hexists (fun ls => forall (a : A), listExt ls a).
(** Properties of enumerated sets: closed under decidable subsets *)
Lemma enumerated_comprehension (A : Type) (P : A -> Bool) :
enumerated A -> enumerated { x : A | P x = true }.
Proof.
intros HeA. strip_truncations. destruct HeA as [eA HeA].
apply tr.
exists (filterD P eA).
intros [x Px].
apply filterD_lookup.
apply (HeA x).
Defined.
Lemma map_listExt {A B} (f : A -> B) (ls : list A) (y : A) :
listExt ls y -> listExt (map f ls) (f y).
Proof.
induction ls.
- simpl. apply idmap.
- simpl. simple refine (Trunc_ind _ _). intros [Hxa | HIH]; apply tr.
+ left. strip_truncations. apply tr. f_ap.
+ right. apply IHls. apply HIH.
Defined.
(** Properties of enumerated sets: closed under surjections *)
Lemma enumerated_surj (A B : Type) (f : A -> B) :
IsSurjection f -> enumerated A -> enumerated B.
Proof.
intros Hsurj HeA. strip_truncations; apply tr.
destruct HeA as [eA HeA].
exists (map f eA).
intros x. specialize (Hsurj x).
pose (t := center (merely (hfiber f x))).
simple refine (@Trunc_rec (-1) (hfiber f x) (listExt (map f eA) x) _ _ t).
intros [y Hfy].
specialize (HeA y). rewrite <- Hfy.
apply map_listExt. apply HeA.
Defined.
Lemma listExt_app_r {A} (ls ls' : list A) (x : A) :
listExt ls x -> listExt (ls ++ ls') x.
Proof.
induction ls; simpl.
- exact Empty_rec.
- simple refine (Trunc_ind _ _). intros [Hxa | HIH]; apply tr.
+ left. apply Hxa.
+ right. apply IHls. apply HIH.
Defined.
Lemma listExt_app_l {A} (ls ls' : list A) (x : A) :
listExt ls x -> listExt (ls' ++ ls) x.
Proof.
induction ls'; simpl.
- apply idmap.
- intros Hls.
apply tr.
right. apply IHls'. apply Hls.
Defined.
(** Properties of enumerated sets: closed under sums *)
Lemma enumerated_sum (A B : Type) :
enumerated A -> enumerated B -> enumerated (A + B).
Proof.
intros HeA HeB.
strip_truncations; apply tr.
destruct HeA as [eA HeA], HeB as [eB HeB].
exists (app (map inl eA) (map inr eB)).
intros [x | x].
- apply listExt_app_r. apply map_listExt. apply HeA.
- apply listExt_app_l. apply map_listExt. apply HeB.
Defined.
Fixpoint listProd_sing {A B} (x : A) (ys : list B) : list (A * B).
Proof.
destruct ys as [|y ys].
- exact nil.
- refine (cons (x,y) _).
apply (listProd_sing _ _ x ys).
Defined.
Fixpoint listProd {A B} (xs : list A) (ys : list B) : list (A * B).
Proof.
destruct xs as [|x xs].
- exact nil.
- refine (app _ _).
+ exact (listProd_sing x ys).
+ exact (listProd _ _ xs ys).
Defined.
Lemma listExt_prod_sing {A B} (x : A) (y : B) (ys : list B) :
listExt ys y -> listExt (listProd_sing x ys) (x, y).
Proof.
induction ys; simpl.
- exact idmap.
- simple refine (Trunc_ind _ _). intros [Hxy | HIH]; simpl; apply tr.
+ left. strip_truncations. apply tr. f_ap.
+ right. apply IHys. apply HIH.
Defined.
Lemma listExt_prod `{Funext} {A B} (xs : list A) (ys : list B) : forall (x : A) (y : B),
listExt xs x -> listExt ys y -> listExt (listProd xs ys) (x,y).
Proof.
induction xs as [| x' xs]; intros x y.
- simpl. contradiction.
- simpl. simple refine (Trunc_ind _ _). intros Htx. simpl.
induction ys as [| y' ys].
+ simpl. contradiction.
+ simpl. simple refine (Trunc_ind _ _). intros Hty. simpl. apply tr.
destruct Htx as [Hxx' | Hxs], Hty as [Hyy' | Hys].
* left. strip_truncations. apply tr. f_ap.
* right. strip_truncations. rewrite <- Hxx'. clear Hxx'.
apply listExt_app_r.
apply listExt_prod_sing. assumption.
* right. strip_truncations. rewrite <- Hyy'.
rewrite <- Hyy' in IHxs.
apply listExt_app_l. apply IHxs. assumption.
simpl. apply tr. left. apply tr. reflexivity.
* right.
apply listExt_app_l.
apply IHxs. assumption.
simpl. apply tr. right. assumption.
Defined.
(** Properties of enumerated sets: closed under products *)
Lemma enumerated_prod (A B : Type) `{Funext} :
enumerated A -> enumerated B -> enumerated (A * B).
Proof.
intros HeA HeB.
strip_truncations; apply tr.
destruct HeA as [eA HeA], HeB as [eB HeB].
exists (listProd eA eB).
intros [x y].
apply listExt_prod; [ apply HeA | apply HeB ].
Defined.
(** If a set is enumerated is it Kuratowski-finite *)
Section enumerated_fset.
Variable A : Type.
Context `{Univalence}.
Fixpoint list_to_fset (ls : list A) : FSet A :=
match ls with
| nil =>
| cons x xs => {|x|} (list_to_fset xs)
end.
Lemma list_to_fset_ext (ls : list A) (a : A):
listExt ls a -> a (list_to_fset ls).
Proof.
induction ls as [|x xs]; simpl.
- apply idmap.
- intros Hin.
strip_truncations. apply tr.
destruct Hin as [Hax | Hin].
+ left. exact Hax.
+ right. by apply IHxs.
Defined.
Lemma enumerated_Kf : enumerated A -> Kf A.
Proof.
intros Hls.
strip_truncations.
destruct Hls as [ls Hls].
exists (list_to_fset ls).
apply path_forall. intro a.
symmetry. apply path_hprop.
apply if_hprop_then_equiv_Unit. apply _.
by apply list_to_fset_ext.
Defined.
End enumerated_fset.
Section fset_dec_enumerated.
Variable A : Type.
Context `{Univalence}.
Definition merely_enumeration_FSet :
forall (X : FSet A),
hexists (fun (ls : list A) => forall a, a X = listExt ls a).
Proof.
simple refine (FSet_cons_ind _ _ _ _ _ _); simpl.
- apply tr. exists nil. simpl. done.
- intros a X Hls.
strip_truncations. apply tr.
destruct Hls as [ls Hls].
exists (cons a ls). intros b. cbn.
apply (ap (fun z => _ z) (Hls b)).
- intros. apply path_ishprop.
- intros. apply path_ishprop.
Defined.
Definition Kf_enumerated : Kf A -> enumerated A.
Proof.
intros HKf. apply Kf_unfold in HKf.
destruct HKf as [X HX].
pose (ls' := (merely_enumeration_FSet X)).
simple refine (@Trunc_rec _ _ _ _ _ ls'). clear ls'.
intros [ls Hls].
apply tr. exists ls.
intros a. rewrite <- Hls. apply (HX a).
Defined.
End fset_dec_enumerated.
Section subobjects.
Variable A : Type.
Context `{Univalence}.
Definition enumeratedS (P : Sub A) : hProp :=
enumerated (sigT P).
Lemma enumeratedS_empty : closedEmpty enumeratedS.
Proof.
unfold enumeratedS.
apply tr. exists nil. simpl.
intros [a Ha]. assumption.
Defined.
Lemma enumeratedS_singleton : closedSingleton enumeratedS.
Proof.
intros x. apply tr. simpl.
exists (cons (x;tr idpath) nil).
intros [y Hxy]. simpl.
strip_truncations. apply tr.
left. apply tr.
apply path_sigma with Hxy.
simpl. apply path_ishprop.
Defined.
Fixpoint weaken_list_r (P Q : Sub A) (ls : list (sigT Q)) : list (sigT (max_L P Q)).
Proof.
destruct ls as [|[x Hx] ls].
- exact nil.
- apply (cons (x; tr (inr Hx))).
apply (weaken_list_r _ _ ls).
Defined.
Lemma listExt_weaken (P Q : Sub A) (ls : list (sigT Q)) (x : A) (Hx : Q x) :
listExt ls (x; Hx) -> listExt (weaken_list_r P Q ls) (x; tr (inr Hx)).
Proof.
induction ls as [|[y Hy] ls]; simpl.
- exact idmap.
- intros Hls.
strip_truncations; apply tr.
destruct Hls as [Hxy | Hls].
+ left. strip_truncations. apply tr.
apply path_sigma_uncurried. simpl.
exists (Hxy..1). apply path_ishprop.
+ right. apply IHls. assumption.
Defined.
Fixpoint concatD {P Q : Sub A}
(ls : list (sigT P)) (ls' : list (sigT Q)) : list (sigT (max_L P Q)).
Proof.
destruct ls as [|[y Hy] ls].
- apply weaken_list_r. exact ls'.
- apply (cons (y; tr (inl Hy))).
apply (concatD _ _ ls ls').
Defined.
(* TODO: this proof basically duplicates a similar proof for weaken_list_r *)
Lemma listExt_concatD_r (P Q : Sub A) (ls : list (sigT P)) (ls' : list (sigT Q)) (x : A) (Hx : P x) :
listExt ls (x; Hx) -> listExt (concatD ls ls') (x;tr (inl Hx)).
Proof.
induction ls as [|[y Hy] ls]; simpl.
- exact Empty_rec.
- intros Hls.
strip_truncations. apply tr.
destruct Hls as [Hxy | Hls].
+ left. strip_truncations. apply tr.
apply path_sigma_uncurried. simpl.
exists (Hxy..1). apply path_ishprop.
+ right. apply IHls. assumption.
Defined.
Lemma listExt_concatD_l (P Q : Sub A) (ls : list (sigT P)) (ls' : list (sigT Q)) (x : A) (Hx : Q x) :
listExt ls' (x; Hx) -> listExt (concatD ls ls') (x;tr (inr Hx)).
Proof.
induction ls as [|[y Hy] ls]; simpl.
- apply listExt_weaken.
- intros Hls'. apply tr.
right. apply IHls. assumption.
Defined.
Lemma enumeratedS_union (P Q : Sub A) :
enumeratedS P -> enumeratedS Q -> enumeratedS (max_L P Q).
Proof.
intros HP HQ.
strip_truncations; apply tr.
destruct HP as [ep HP], HQ as [eq HQ].
exists (concatD ep eq).
intros [x Hx].
strip_truncations.
destruct Hx as [Hxp | Hxq].
- apply listExt_concatD_r. apply HP.
- apply listExt_concatD_l. apply HQ.
Defined.
Opaque enumeratedS.
Definition FSet_to_enumeratedS :
forall (X : FSet A), enumeratedS (k_finite.map X).
Proof.
hinduction.
- apply enumeratedS_empty.
- intros a. apply enumeratedS_singleton.
- unfold k_finite.map; simpl.
intros X Y Xs Ys.
apply enumeratedS_union; assumption.
- intros. apply path_ishprop.
- intros. apply path_ishprop.
- intros. apply path_ishprop.
- intros. apply path_ishprop.
- intros. apply path_ishprop.
Defined.
Transparent enumeratedS.
Instance hprop_sub_fset (P : Sub A) :
IsHProp {X : FSet A & k_finite.map X = P}.
Proof.
apply hprop_allpath. intros [X HX] [Y HY].
assert (X = Y) as HXY.
{ apply (isinj_embedding k_finite.map). apply _.
apply (HX @ HY^). }
apply path_sigma with HXY.
apply set_path2.
Defined.
Fixpoint list_weaken_to_fset (P : Sub A) (ls : list (sigT P)) : FSet A :=
match ls with
| nil =>
| cons x xs => {|x.1|} (list_weaken_to_fset P xs)
end.
Lemma list_weaken_to_fset_ext (P : Sub A) (ls : list (sigT P)) (a : A) (Ha : P a):
listExt ls (a;Ha) -> a (list_weaken_to_fset P ls).
Proof.
induction ls as [|[x Hx] xs]; simpl.
- apply idmap.
- intros Hin.
strip_truncations. apply tr.
destruct Hin as [Hax | Hin].
+ left.
strip_truncations. apply tr.
exact (Hax..1).
+ right. by apply IHxs.
Defined.
Lemma list_weaken_to_fset_in_sub (P : Sub A) (ls : list (sigT P)) (a : A) :
a (list_weaken_to_fset P ls) -> P a.
Proof.
induction ls as [|[x Hx] xs]; simpl.
- apply Empty_rec.
- intros Ha.
strip_truncations.
destruct Ha as [Hax | Hin].
+ strip_truncations.
by rewrite Hax.
+ by apply IHxs.
Defined.
Definition enumeratedS_to_FSet :
forall (P : Sub A), enumeratedS P ->
{X : FSet A & k_finite.map X = P}.
Proof.
intros P HP.
strip_truncations.
destruct HP as [ls Hls].
exists (list_weaken_to_fset _ ls).
apply path_forall. intro a.
symmetry. apply path_iff_hprop.
- intros Ha.
apply list_weaken_to_fset_ext with Ha.
apply Hls.
- unfold k_finite.map.
apply list_weaken_to_fset_in_sub.
Defined.
End subobjects.

View File

@@ -0,0 +1,246 @@
Require Import HoTT HitTactics.
Require Import sub lattice_interface lattice_examples FSets.
Section k_finite.
Context (A : Type).
Context `{Univalence}.
Definition map (X : FSet A) : Sub A := fun a => a X.
Global Instance map_injective : IsEmbedding map.
Proof.
apply isembedding_isinj_hset. (* We use the fact that both [FSet A] and [Sub A] are hSets *)
intros X Y HXY.
apply fset_ext.
apply apD10. exact HXY.
Defined.
Definition Kf_sub_intern (B : Sub A) := exists (X : FSet A), B = map X.
Instance Kf_sub_hprop B : IsHProp (Kf_sub_intern B).
Proof.
apply hprop_allpath.
intros [X PX] [Y PY].
assert (X = Y) as HXY.
{ apply fset_ext. apply apD10.
transitivity B; [ symmetry | ]; assumption. }
apply path_sigma with HXY. simpl.
apply set_path2.
Defined.
Definition Kf_sub (B : Sub A) : hProp := BuildhProp (Kf_sub_intern B).
Definition Kf : hProp := Kf_sub (fun x => True).
Instance: IsHProp {X : FSet A & forall a : A, map X a}.
Proof.
apply hprop_allpath.
intros [X PX] [Y PY].
assert (X = Y) as HXY.
{ apply fset_ext. intros a.
unfold map in *.
apply path_hprop.
apply equiv_iff_hprop; intros.
+ apply PY.
+ apply PX. }
apply path_sigma with HXY. simpl.
apply path_forall. intro.
apply path_ishprop.
Defined.
Lemma Kf_unfold : Kf <~> (exists (X : FSet A), forall (a : A), map X a).
Proof.
apply equiv_equiv_iff_hprop. apply _. apply _.
split.
- intros [X PX]. exists X. intro a.
rewrite <- PX. done.
- intros [X PX]. exists X. apply path_forall; intro a.
apply path_hprop.
symmetry. apply if_hprop_then_equiv_Unit; [ apply _ | ].
apply PX.
Defined.
End k_finite.
Arguments map {_} {_} _.
Section structure_k_finite.
Context (A : Type).
Context `{Univalence}.
Lemma map_union : forall X Y : FSet A, map (X Y) = max_fun (map X) (map Y).
Proof.
intros.
unfold map, max_fun.
reflexivity.
Defined.
Lemma k_finite_union : closedUnion (Kf_sub A).
Proof.
unfold closedUnion, Kf_sub, Kf_sub_intern.
intros.
destruct X0 as [SX XP].
destruct X1 as [SY YP].
exists (SX SY).
rewrite map_union.
rewrite XP, YP.
reflexivity.
Defined.
Lemma k_finite_empty : closedEmpty (Kf_sub A).
Proof.
exists .
reflexivity.
Defined.
Lemma k_finite_singleton : closedSingleton (Kf_sub A).
Proof.
intro.
exists {|a|}.
cbn.
apply path_forall.
intro z.
reflexivity.
Defined.
Lemma k_finite_hasDecidableEmpty : hasDecidableEmpty (Kf_sub A).
Proof.
unfold hasDecidableEmpty, closedEmpty, Kf_sub, Kf_sub_intern, map.
intros.
destruct X0 as [SX EX].
rewrite EX.
destruct (merely_choice SX) as [SXE | H1].
- rewrite SXE.
apply (tr (inl idpath)).
- apply (tr (inr H1)).
Defined.
End structure_k_finite.
Section k_properties.
Context `{Univalence}.
Lemma Kf_surjection {X Y : Type} (f : X -> Y) `{IsSurjection f} :
Kf X -> Kf Y.
Proof.
intros HX. apply Kf_unfold. apply Kf_unfold in HX.
destruct HX as [Xf HXf].
exists (fmap FSet f Xf).
intro y.
pose (x' := center (merely (hfiber f y))).
simple refine (@Trunc_rec (-1) (hfiber f y) _ _ _ x'). clear x'; intro x.
destruct x as [x Hfx]. rewrite <- Hfx.
apply fmap_isIn.
apply (HXf x).
Defined.
Lemma S1_Kfinite : Kf S1.
Proof.
apply Kf_unfold.
exists {|base|}.
intro a. simpl.
simple refine (S1_ind (fun z => Trunc (-1) (z = base)) _ _ a); simpl.
- apply (tr loop).
- apply path_ishprop.
Defined.
Lemma I_Kfinite : Kf interval.
Proof.
apply Kf_unfold.
exists {|Interval.one|}.
intro a. simpl.
simple refine (interval_ind (fun z => Trunc (-1) (z = Interval.one)) _ _ _ a); simpl.
- apply (tr seg).
- apply (tr idpath).
- apply path_ishprop.
Defined.
End k_properties.
Section alternative_definition.
Context `{Univalence} {A : Type}.
Definition kf_sub (P : A -> hProp) :=
BuildhProp(forall (K' : (A -> hProp) -> hProp),
K' -> (forall a, K' {|a|}) -> (forall U V, K' U -> K' V -> K'(U V))
-> K' P).
Local Ltac help_solve :=
repeat (let x := fresh in intro x ; destruct x) ; intros
; try (simple refine (path_sigma _ _ _ _ _)) ; try (apply path_ishprop) ; simpl
; unfold union, sub_union, max_fun
; apply path_forall
; intro z
; eauto with lattice_hints typeclass_instances.
Definition fset_to_k : FSet A -> {P : A -> hProp & kf_sub P}.
Proof.
hinduction.
- exists .
auto.
- intros a.
exists {|a|}.
auto.
- intros [P1 HP1] [P2 HP2].
exists (P1 P2).
intros ? ? ? HP.
apply HP.
* apply HP1 ; assumption.
* apply HP2 ; assumption.
- help_solve.
- help_solve.
- help_solve.
- help_solve.
- help_solve.
Defined.
Definition k_to_fset : {P : A -> hProp & kf_sub P} -> FSet A.
Proof.
intros [P HP].
destruct (HP (Kf_sub _) (k_finite_empty _) (k_finite_singleton _) (k_finite_union _)).
assumption.
Defined.
Lemma fset_to_k_to_fset X : k_to_fset(fset_to_k X) = X.
Proof.
hinduction X ; try (intros ; apply path_ishprop) ; try (intros ; reflexivity).
intros X1 X2 HX1 HX2.
refine ((ap (fun z => _ z) HX2^)^ @ (ap (fun z => z X2) HX1^)^).
Defined.
Lemma k_to_fset_to_k (X : {P : A -> hProp & kf_sub P}) : fset_to_k(k_to_fset X) = X.
Proof.
simple refine (path_sigma _ _ _ _ _) ; try (apply path_ishprop).
apply path_forall.
intro z.
destruct X as [P HP].
unfold kf_sub in HP.
unfold k_to_fset.
pose (HP (Kf_sub A) (k_finite_empty A) (k_finite_singleton A) (k_finite_union A)) as t.
assert (HP (Kf_sub A) (k_finite_empty A) (k_finite_singleton A) (k_finite_union A) = t) as X0.
{ reflexivity. }
rewrite X0 ; clear X0.
destruct t as [X HX].
assert (P z = map X z) as X1.
{ rewrite HX. reflexivity. }
simpl.
rewrite X1 ; clear HX X1.
hinduction X ; try (intros ; apply path_ishprop).
- apply idpath.
- apply (fun a => idpath).
- intros X1 X2 H1 H2.
rewrite <- H1, <- H2.
reflexivity.
Defined.
Theorem equiv_definition : IsEquiv fset_to_k.
Proof.
apply isequiv_biinv.
split.
- exists k_to_fset.
intro x ; apply fset_to_k_to_fset.
- exists k_to_fset.
intro x ; apply k_to_fset_to_k.
Defined.
End alternative_definition.