Separate the lattice properties proofs, get rid of the admits and general cleanup

This commit is contained in:
Dan Frumin 2017-06-19 21:32:55 +02:00
parent 8e6ab4c340
commit 47a38b3568
2 changed files with 252 additions and 368 deletions

View File

@ -60,15 +60,16 @@ End Lattice.
Arguments Lattice {_} _ _ _. Arguments Lattice {_} _ _ _.
Ltac solve :=
let x := fresh in
repeat (intro x ; destruct x)
; compute
; auto
; try contradiction.
Section BoolLattice. Section BoolLattice.
Local Ltac solve :=
let x := fresh in
repeat (intro x ; destruct x)
; compute
; auto
; try contradiction.
Instance min_com : Commutative orb. Instance min_com : Commutative orb.
Proof. Proof.
solve. solve.
@ -134,98 +135,7 @@ Section BoolLattice.
End BoolLattice. End BoolLattice.
Require Import definition.
Require Import properties.
Hint Resolve Hint Resolve
min_com max_com min_assoc max_assoc min_idem max_idem min_nl min_nr min_com max_com min_assoc max_assoc min_idem max_idem min_nl min_nr
bool_absorption_min_max bool_absorption_max_min bool_absorption_min_max bool_absorption_max_min
: bool_lattice_hints. : bool_lattice_hints.
Section SetLattice.
Context {A : Type}.
Context {A_deceq : DecidablePaths A}.
Context `{Funext}.
Lemma ext `{Funext} : forall S T, (forall a, isIn a S = isIn a T) -> S = T.
Proof.
intros.
destruct (fset_ext S T).
destruct equiv_isequiv.
apply equiv_inv.
apply X.
Defined.
Ltac simplify_isIn :=
repeat (rewrite ?intersection_isIn ;
rewrite ?union_isIn).
Ltac toBool := try (intro) ;
intros ; apply ext ; intros ; simplify_isIn ; eauto with bool_lattice_hints.
Instance union_com : Commutative (@U A).
Proof.
toBool.
Defined.
Instance intersection_com : Commutative intersection.
Proof.
toBool.
Defined.
Instance union_assoc : Associative (@U A).
Proof.
toBool.
Defined.
Instance intersection_assoc : Associative intersection.
Proof.
toBool.
Defined.
Instance union_idem : Idempotent (@U A).
Proof.
toBool.
Defined.
Instance intersection_idem : Idempotent intersection.
Proof.
toBool.
Defined.
Instance union_nl : NeutralL (@U A) (@E A).
Proof.
toBool.
Defined.
Instance union_nr : NeutralR (@U A) (@E A).
Proof.
toBool.
Defined.
Instance set_absorption_intersection_union : Absorption (@U A) intersection.
Proof.
toBool.
Defined.
Instance set_absorption_union_intersection : Absorption intersection (@U A).
Proof.
toBool.
Defined.
Instance lattice_set : Lattice (@U A) intersection (@E A) :=
{
commutative_min := _ ;
commutative_max := _ ;
associative_min := _ ;
associative_max := _ ;
idempotent_min := _ ;
idempotent_max := _ ;
neutralL_min := _ ;
neutralR_min := _ ;
absorption_min_max := _ ;
absorption_max_min := _
}.
End SetLattice.

View File

@ -1,6 +1,237 @@
Require Import HoTT HitTactics. Require Import HoTT HitTactics.
Require Export definition operations Ext. Require Export definition operations Ext Lattice.
(* Lemmas relating operations to the membership predicate *)
Section operations_isIn.
Context {A : Type} `{DecidablePaths A}.
Lemma ext `{Funext} : forall (S T : FSet A), (forall a, isIn a S = isIn a T) -> S = T.
Proof.
apply fset_ext.
Defined.
(* Union and membership *)
Theorem union_isIn (X Y : FSet A) (a : A) :
isIn a (U X Y) = orb (isIn a X) (isIn a Y).
Proof.
reflexivity.
Defined.
(* Intersection and membership. We need a bunch of supporting lemmas *)
Lemma intersection_0l: forall X: FSet A, intersection E X = E.
Proof.
hinduction;
try (intros ; apply set_path2).
- reflexivity.
- intro a.
reflexivity.
- intros x y P Q.
cbn.
rewrite P.
rewrite Q.
apply union_idem.
Defined.
Lemma intersection_0r (X : FSet A) : intersection X E = E.
Proof. exact idpath. Defined.
Lemma intersection_La (X : FSet A) (a : A) :
intersection (L a) X = if isIn a X then L a else E.
Proof.
hinduction X; try (intros ; apply set_path2).
- reflexivity.
- intro b.
cbn.
destruct (dec (a = b)) as [p|np].
* rewrite p.
destruct (dec (b = b)) as [|nb]; [reflexivity|].
by contradiction nb.
* destruct (dec (b = a)); [|reflexivity].
by contradiction np.
- unfold intersection.
intros X Y P Q.
cbn.
rewrite P.
rewrite Q.
destruct (isIn a X) ; destruct (isIn a Y).
* apply union_idem.
* apply nr.
* apply nl.
* apply union_idem.
Defined.
Lemma comprehension_or : forall ϕ ψ (x: FSet A),
comprehension (fun a => orb (ϕ a) (ψ a)) x = U (comprehension ϕ x)
(comprehension ψ x).
Proof.
intros ϕ ψ.
hinduction; try (intros; apply set_path2).
- cbn. apply (union_idem _)^.
- cbn. intros.
destruct (ϕ a) ; destruct (ψ a) ; symmetry.
* apply union_idem.
* apply nr.
* apply nl.
* apply union_idem.
- simpl. intros x y P Q.
rewrite P.
rewrite Q.
rewrite <- assoc.
rewrite (assoc (comprehension ψ x)).
rewrite (comm (comprehension ψ x) (comprehension ϕ y)).
rewrite <- assoc.
rewrite <- assoc.
reflexivity.
Defined.
Lemma distributive_La (z : FSet A) (a : A) : forall Y : FSet A,
intersection (U (L a) z) Y = U (intersection (L a) Y) (intersection z Y).
Proof.
hinduction; try (intros ; apply set_path2) ; cbn.
- symmetry ; apply nl.
- intros b.
destruct (dec (b = a)) ; cbn.
* destruct (isIn b z).
+ rewrite union_idem.
reflexivity.
+ rewrite nr.
reflexivity.
* rewrite nl ; reflexivity.
- intros X1 X2 P Q.
rewrite P. rewrite Q.
rewrite <- assoc.
rewrite (comm (comprehension (fun a0 : A => isIn a0 z) X1)).
rewrite <- assoc.
rewrite assoc.
rewrite (comm (comprehension (fun a0 : A => isIn a0 z) X2)).
reflexivity.
Defined.
Lemma distributive_intersection_U (X1 X2 Y : FSet A) :
intersection (U X1 X2) Y = U (intersection X1 Y) (intersection X2 Y).
Proof.
hinduction X1; try (intros ; apply set_path2) ; cbn.
- rewrite intersection_0l.
rewrite nl.
rewrite nl.
reflexivity.
- intro a.
rewrite intersection_La.
rewrite distributive_La.
rewrite intersection_La.
reflexivity.
- intros Z1 Z2 P Q.
unfold intersection in *. simpl in *.
apply comprehension_or.
Defined.
Theorem intersection_isIn (X Y: FSet A) (a : A) :
isIn a (intersection X Y) = andb (isIn a X) (isIn a Y).
Proof.
hinduction X; try (intros ; apply set_path2) ; cbn.
- rewrite intersection_0l.
reflexivity.
- intro b.
rewrite intersection_La.
destruct (dec (a = b)) ; cbn.
* rewrite p.
destruct (isIn b Y).
+ cbn.
destruct (dec (b = b)); [reflexivity|].
by contradiction n.
+ reflexivity.
* destruct (isIn b Y).
+ cbn.
destruct (dec (a = b)); [|reflexivity].
by contradiction n.
+ reflexivity.
- intros X1 X2 P Q.
rewrite distributive_intersection_U. simpl.
rewrite P.
rewrite Q.
destruct (isIn a X1) ; destruct (isIn a X2) ; destruct (isIn a Y) ;
reflexivity.
Defined.
End operations_isIn.
(* Some suporting tactics *)
Ltac simplify_isIn :=
repeat (rewrite ?intersection_isIn ;
rewrite ?union_isIn).
Ltac toBool := try (intro) ;
intros ; apply ext ; intros ; simplify_isIn ; eauto with bool_lattice_hints.
Section SetLattice.
Context {A : Type}.
Context {A_deceq : DecidablePaths A}.
Context `{Funext}.
Instance fset_union_com : Commutative (@U A).
Proof.
toBool.
Defined.
Instance fset_intersection_com : Commutative intersection.
Proof.
toBool.
Defined.
Instance fset_union_assoc : Associative (@U A).
Proof.
toBool.
Defined.
Instance fset_intersection_assoc : Associative intersection.
Proof.
toBool.
Defined.
Instance fset_union_idem : Idempotent (@U A).
Proof. exact union_idem. Defined.
Instance fset_intersection_idem : Idempotent intersection.
Proof.
toBool.
Defined.
Instance fset_union_nl : NeutralL (@U A) (@E A).
Proof.
toBool.
Defined.
Instance fset_union_nr : NeutralR (@U A) (@E A).
Proof.
toBool.
Defined.
Instance fset_absorption_intersection_union : Absorption (@U A) intersection.
Proof.
toBool.
Defined.
Instance fset_absorption_union_intersection : Absorption intersection (@U A).
Proof.
toBool.
Defined.
Instance lattice_fset : Lattice (@U A) intersection (@E A) :=
{
commutative_min := _ ;
commutative_max := _ ;
associative_min := _ ;
associative_max := _ ;
idempotent_min := _ ;
idempotent_max := _ ;
neutralL_min := _ ;
neutralR_min := _ ;
absorption_min_max := _ ;
absorption_max_min := _
}.
End SetLattice.
(* Other properties *)
Section properties. Section properties.
Context {A : Type}. Context {A : Type}.
@ -25,42 +256,17 @@ Lemma isIn_union (a: A) (X Y: FSet A) :
Proof. reflexivity. Qed. Proof. reflexivity. Qed.
(** comprehension properties *) (** comprehension properties *)
Lemma comprehension_false Y : comprehension (fun a => isIn a E) Y = E. Lemma comprehension_false Y : comprehension (fun (_ : A) => false) Y = E.
Proof. Proof.
hrecursion Y; try (intros; apply set_path2). hrecursion Y; try (intros; apply set_path2).
- cbn. reflexivity. - reflexivity.
- cbn. reflexivity. - reflexivity.
- intros x y IHa IHb. - intros x y IHa IHb.
cbn.
rewrite IHa. rewrite IHa.
rewrite IHb. rewrite IHb.
apply union_idem. apply union_idem.
Defined. Defined.
Theorem comprehension_or : forall ϕ ψ (x: FSet A),
comprehension (fun a => orb (ϕ a) (ψ a)) x = U (comprehension ϕ x)
(comprehension ψ x).
Proof.
intros ϕ ψ.
hinduction; try (intros; apply set_path2).
- cbn. apply (union_idem _)^.
- cbn. intros.
destruct (ϕ a) ; destruct (ψ a) ; symmetry.
* apply union_idem.
* apply nr.
* apply nl.
* apply union_idem.
- simpl. intros x y P Q.
rewrite P.
rewrite Q.
rewrite <- assoc.
rewrite (assoc (comprehension ψ x)).
rewrite (comm (comprehension ψ x) (comprehension ϕ y)).
rewrite <- assoc.
rewrite <- assoc.
reflexivity.
Defined.
Theorem comprehension_subset : forall ϕ (X : FSet A), Theorem comprehension_subset : forall ϕ (X : FSet A),
U (comprehension ϕ X) X = X. U (comprehension ϕ X) X = X.
Proof. Proof.
@ -83,48 +289,7 @@ hrecursion; try (intros ; apply set_path2) ; cbn.
Defined. Defined.
(** intersection properties *) (** intersection properties *)
Lemma intersection_0l: forall X: FSet A, intersection E X = E.
Proof.
hinduction;
try (intros ; apply set_path2).
- reflexivity.
- intro a.
reflexivity.
- intros x y P Q.
cbn.
rewrite P.
rewrite Q.
apply union_idem.
Defined.
Lemma intersection_0r (X: FSet A): intersection X E = E.
Proof. exact idpath. Defined.
Theorem intersection_La : forall (a : A) (X : FSet A),
intersection (L a) X = if isIn a X then L a else E.
Proof.
intro a.
hinduction; try (intros ; apply set_path2).
- reflexivity.
- intro b.
cbn.
destruct (dec (a = b)) as [p|np].
* rewrite p.
destruct (dec (b = b)) as [|nb]; [reflexivity|].
by contradiction nb.
* destruct (dec (b = a)); [|reflexivity].
by contradiction np.
- unfold intersection.
intros x y P Q.
cbn.
rewrite P.
rewrite Q.
destruct (isIn a x) ; destruct (isIn a y).
* apply idem.
* apply nr.
* apply nl.
* apply nl.
Defined.
Lemma intersection_comm X Y: intersection X Y = intersection Y X. Lemma intersection_comm X Y: intersection X Y = intersection Y X.
Proof. Proof.
@ -175,79 +340,6 @@ hinduction; try (intros ; apply set_path2).
Defined. Defined.
(** assorted lattice laws *) (** assorted lattice laws *)
Lemma distributive_La (z : FSet A) (a : A) : forall Y : FSet A,
intersection (U (L a) z) Y = U (intersection (L a) Y) (intersection z Y).
Proof.
hinduction; try (intros ; apply set_path2) ; cbn.
- symmetry ; apply nl.
- intros b.
destruct (dec (b = a)) ; cbn.
* destruct (isIn b z).
+ rewrite union_idem.
reflexivity.
+ rewrite nr.
reflexivity.
* rewrite nl ; reflexivity.
- intros X1 X2 P Q.
rewrite P. rewrite Q.
rewrite <- assoc.
rewrite (comm (comprehension (fun a0 : A => isIn a0 z) X1)).
rewrite <- assoc.
rewrite assoc.
rewrite (comm (comprehension (fun a0 : A => isIn a0 z) X2)).
reflexivity.
Defined.
Theorem distributive_intersection_U (X1 X2 Y : FSet A) :
intersection (U X1 X2) Y = U (intersection X1 Y) (intersection X2 Y).
Proof.
hinduction X1; try (intros ; apply set_path2) ; cbn.
- rewrite intersection_0l.
rewrite nl.
rewrite nl.
reflexivity.
- intro a.
rewrite intersection_La.
rewrite distributive_La.
rewrite intersection_La.
reflexivity.
- intros Z1 Z2 P Q.
unfold intersection in *.
cbn.
rewrite comprehension_or.
rewrite comprehension_or.
reflexivity.
Defined.
Theorem intersection_isIn : forall a (x y: FSet A),
isIn a (intersection x y) = andb (isIn a x) (isIn a y).
Proof.
intros a x y.
hinduction x; try (intros ; apply set_path2) ; cbn.
- rewrite intersection_0l.
reflexivity.
- intro b.
rewrite intersection_La.
destruct (dec (a = b)) ; cbn.
* rewrite p.
destruct (isIn b y).
+ cbn.
destruct (dec (b = b)); [reflexivity|].
by contradiction n.
+ reflexivity.
* destruct (isIn b y).
+ cbn.
destruct (dec (a = b)); [|reflexivity].
by contradiction n.
+ reflexivity.
- intros X1 X2 P Q.
rewrite distributive_intersection_U.
cbn.
rewrite P.
rewrite Q.
destruct (isIn a X1) ; destruct (isIn a X2) ; destruct (isIn a y) ;
reflexivity.
Defined.
Theorem intersection_assoc (X Y Z: FSet A) : Theorem intersection_assoc (X Y Z: FSet A) :
intersection X (intersection Y Z) = intersection (intersection X Y) Z. intersection X (intersection Y Z) = intersection (intersection X Y) Z.
@ -300,77 +392,12 @@ hinduction; try (intros ; apply set_path2).
Defined. Defined.
Theorem distributive_U_int (X1 X2 Y : FSet A) : Theorem distributive_U_int `{Funext} (X1 X2 Y : FSet A) :
U (intersection X1 X2) Y = intersection (U X1 Y) (U X2 Y). U (intersection X1 X2) Y = intersection (U X1 Y) (U X2 Y).
Proof. Proof.
hinduction X1; try (intros ; apply set_path2) ; cbn. toBool.
- rewrite intersection_0l. destruct (a X1), (a X2), (a Y); eauto.
rewrite nl. Defined.
unfold intersection.
rewrite comprehension_all.
pose (intersection_comm Y X2).
unfold intersection in p.
rewrite p.
rewrite comprehension_subset.
reflexivity.
- intros.
assert (Y = intersection (U (L a) Y) Y) as HY.
{ unfold intersection. symmetry.
transitivity (U (comprehension (fun x => isIn x (L a)) Y) (comprehension (fun x => isIn x Y) Y)).
apply comprehension_or.
rewrite comprehension_all.
apply comprehension_subset. }
rewrite <- HY.
admit.
- unfold intersection.
intros Z1 Z2 P Q.
rewrite comprehension_or.
assert (U (U (comprehension (fun a : A => isIn a Z1) X2)
(comprehension (fun a : A => isIn a Z2) X2))
Y = U (U (comprehension (fun a : A => isIn a Z1) X2)
(comprehension (fun a : A => isIn a Z2) X2))
(U Y Y)).
rewrite (union_idem Y).
reflexivity.
rewrite X.
rewrite <- assoc.
rewrite (assoc (comprehension (fun a : A => isIn a Z2) X2)).
rewrite Q.
cbn.
rewrite
(comm (U (comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) X2)
(comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) Y)) Y).
rewrite assoc.
rewrite P.
rewrite <- assoc. cbn.
rewrite (assoc (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)).
rewrite (comm (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)).
rewrite <- assoc.
rewrite assoc.
enough (C : (U (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) X2)
(comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) X2))
= (comprehension (fun a : A => (isIn a Z1 || isIn a Z2 || isIn a Y)%Bool) X2)).
rewrite C.
enough (D : (U (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)
(comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) Y))
= (comprehension (fun a : A => (isIn a Z1 || isIn a Z2 || isIn a Y)%Bool) Y)).
rewrite D.
reflexivity.
* repeat (rewrite comprehension_or).
rewrite <- assoc.
rewrite (comm (comprehension (fun a : A => isIn a Y) Y)).
rewrite <- (assoc (comprehension (fun a : A => isIn a Z2) Y)).
rewrite union_idem.
rewrite assoc.
reflexivity.
* repeat (rewrite comprehension_or).
rewrite <- assoc.
rewrite (comm (comprehension (fun a : A => isIn a Y) X2)).
rewrite <- (assoc (comprehension (fun a : A => isIn a Z2) X2)).
rewrite union_idem.
rewrite assoc.
reflexivity.
Admitted.
Theorem absorb_0 (X Y : FSet A) : U X (intersection X Y) = X. Theorem absorb_0 (X Y : FSet A) : U X (intersection X Y) = X.
Proof. Proof.
@ -395,62 +422,9 @@ hinduction X; try (intros ; apply set_path2) ; cbn.
reflexivity. reflexivity.
Defined. Defined.
Theorem absorb_1 (X Y : FSet A) : intersection X (U X Y) = X. Theorem absorb_1 `{Funext} (X Y : FSet A) : intersection X (U X Y) = X.
Proof. Proof.
hrecursion X; try (intros ; apply set_path2). toBool.
- cbn.
rewrite nl.
apply comprehension_false.
- intro a.
rewrite intersection_La.
destruct (dec (a = a)).
* destruct (isIn a Y).
+ apply union_idem.
+ apply nr.
* contradiction (n idpath).
- intros X1 X2 P Q.
cbn in *.
symmetry.
rewrite <- P.
rewrite <- Q.
Admitted.
Theorem union_isIn (X Y : FSet A) (a : A) : isIn a (U X Y) = orb (isIn a X) (isIn a Y).
Proof.
reflexivity.
Defined.
Ltac solve :=
let x := fresh in
repeat (intro x ; destruct x)
; compute
; auto
; try contradiction.
Ltac simplify_isIn :=
repeat (rewrite ?intersection_isIn ;
rewrite ?union_isIn).
Lemma ext `{Funext} : forall S T, (forall a, isIn a S = isIn a T) -> S = T.
Proof.
intros.
destruct (fset_ext S T).
destruct equiv_isequiv.
apply equiv_inv.
apply X.
Defined.
Ltac toBool :=
intros ; apply ext ; intros ; simplify_isIn.
Lemma andb_comm : forall x y, andb x y = andb y x.
Proof.
solve.
Defined.
Lemma intersectioncomm `{Funext} : forall x y, intersection x y = intersection y x.
Proof.
toBool. apply andb_comm.
Defined. Defined.
End properties. End properties.