mirror of https://github.com/nmvdw/HITs-Examples
Some cleanup for the extensionality proof
This commit is contained in:
parent
dce70f517f
commit
490980db0f
|
@ -437,6 +437,7 @@ Proof.
|
|||
reflexivity.
|
||||
Defined.
|
||||
|
||||
(* Proof of the extensionality axiom *)
|
||||
(* Properties about subset relation. *)
|
||||
Lemma subset_union `{Funext} (X Y : FSet A) :
|
||||
subset X Y = true -> U X Y = Y.
|
||||
|
@ -472,17 +473,6 @@ hinduction X; try (intros; apply path_forall; intro; apply set_path2).
|
|||
* contradiction (false_ne_true).
|
||||
Defined.
|
||||
|
||||
Lemma eq1 (X Y : FSet A) : X = Y <~> (U Y X = X) * (U X Y = Y).
|
||||
Proof.
|
||||
eapply equiv_iff_hprop_uncurried.
|
||||
split.
|
||||
- intro H. split.
|
||||
apply (comm Y X @ ap (U X) H^ @ union_idem X).
|
||||
apply (ap (U X) H^ @ union_idem X @ H).
|
||||
- intros [H1 H2]. etransitivity. apply H1^.
|
||||
apply (comm Y X @ H2).
|
||||
Defined.
|
||||
|
||||
Lemma subset_union_l `{Funext} X :
|
||||
forall Y, subset X (U X Y) = true.
|
||||
Proof.
|
||||
|
@ -493,13 +483,10 @@ hinduction X;
|
|||
* reflexivity.
|
||||
* by contradiction n.
|
||||
- intros X1 X2 HX1 HX2 Y.
|
||||
enough (subset X1 (U (U X1 X2) Y) = true).
|
||||
enough (subset X2 (U (U X1 X2) Y) = true).
|
||||
rewrite X. rewrite X0. reflexivity.
|
||||
{ rewrite (comm X1 X2).
|
||||
rewrite <- (assoc X2 X1 Y).
|
||||
apply (HX2 (U X1 Y)). }
|
||||
{ rewrite <- (assoc X1 X2 Y). apply (HX1 (U X2 Y)). }
|
||||
refine (ap (fun z => (X1 ⊆ z && X2 ⊆ (X1 ∪ X2) ∪ Y))%Bool (assoc X1 X2 Y)^ @ _).
|
||||
refine (ap (fun z => (X1 ⊆ _ && X2 ⊆ z ∪ Y))%Bool (comm _ _) @ _).
|
||||
refine (ap (fun z => (X1 ⊆ _ && X2 ⊆ z))%Bool (assoc _ _ _)^ @ _).
|
||||
rewrite HX1. simpl. apply HX2.
|
||||
Defined.
|
||||
|
||||
Lemma subset_union_equiv `{Funext}
|
||||
|
@ -514,11 +501,22 @@ Proof.
|
|||
apply subset_union_l.
|
||||
Defined.
|
||||
|
||||
Lemma eq_subset' (X Y : FSet A) : X = Y <~> (U Y X = X) * (U X Y = Y).
|
||||
Proof.
|
||||
eapply equiv_iff_hprop_uncurried.
|
||||
split.
|
||||
- intro H. split.
|
||||
apply (comm Y X @ ap (U X) H^ @ union_idem X).
|
||||
apply (ap (U X) H^ @ union_idem X @ H).
|
||||
- intros [H1 H2]. etransitivity. apply H1^.
|
||||
apply (comm Y X @ H2).
|
||||
Defined.
|
||||
|
||||
Lemma eq_subset `{Funext} (X Y : FSet A) :
|
||||
X = Y <~> ((subset Y X = true) * (subset X Y = true)).
|
||||
Proof.
|
||||
transitivity ((U Y X = X) * (U X Y = Y)).
|
||||
apply eq1.
|
||||
apply eq_subset'.
|
||||
symmetry.
|
||||
eapply equiv_functor_prod'; apply subset_union_equiv.
|
||||
Defined.
|
||||
|
@ -557,26 +555,26 @@ Proof.
|
|||
destruct (dec (a = b)).
|
||||
+ intros ; rewrite p ; apply H.
|
||||
+ intros X ; contradiction (false_ne_true X).
|
||||
* intros X1 X2.
|
||||
intros IH1 IH2 H1 a H2.
|
||||
destruct (subset X1 Y) ; destruct (subset X2 Y);
|
||||
cbv in H1; try by contradiction false_ne_true.
|
||||
specialize (IH1 idpath a). specialize (IH2 idpath a).
|
||||
destruct (isIn a X1); destruct (isIn a X2);
|
||||
cbv in H2; try by contradiction false_ne_true.
|
||||
by apply IH1.
|
||||
by apply IH1.
|
||||
by apply IH2.
|
||||
* repeat (intro; intros; apply path_forall).
|
||||
intros; intro; intros; apply set_path2.
|
||||
* repeat (intro; intros; apply path_forall).
|
||||
intros; intro; intros; apply set_path2.
|
||||
* repeat (intro; intros; apply path_forall).
|
||||
intros; intro; intros; apply set_path2.
|
||||
* repeat (intro; intros; apply path_forall).
|
||||
intros; intro; intros; apply set_path2.
|
||||
* repeat (intro; intros; apply path_forall);
|
||||
intros; intro; intros; apply set_path2.
|
||||
* intros X1 X2.
|
||||
intros IH1 IH2 H1 a H2.
|
||||
destruct (subset X1 Y) ; destruct (subset X2 Y);
|
||||
cbv in H1; try by contradiction false_ne_true.
|
||||
specialize (IH1 idpath a). specialize (IH2 idpath a).
|
||||
destruct (isIn a X1); destruct (isIn a X2);
|
||||
cbv in H2; try by contradiction false_ne_true.
|
||||
by apply IH1.
|
||||
by apply IH1.
|
||||
by apply IH2.
|
||||
* repeat (intro; intros; apply path_forall).
|
||||
intros; intro; intros; apply set_path2.
|
||||
* repeat (intro; intros; apply path_forall).
|
||||
intros; intro; intros; apply set_path2.
|
||||
* repeat (intro; intros; apply path_forall).
|
||||
intros; intro; intros; apply set_path2.
|
||||
* repeat (intro; intros; apply path_forall).
|
||||
intros; intro; intros; apply set_path2.
|
||||
* repeat (intro; intros; apply path_forall);
|
||||
intros; intro; intros; apply set_path2.
|
||||
Defined.
|
||||
|
||||
Theorem fset_ext `{Funext} (X Y : FSet A) :
|
||||
|
|
Loading…
Reference in New Issue