mirror of
				https://github.com/nmvdw/HITs-Examples
				synced 2025-11-03 23:23:51 +01:00 
			
		
		
		
	Some quickfixes
This commit is contained in:
		@@ -2,7 +2,6 @@ Require Import FSets list_representation.
 | 
				
			|||||||
Require Import kuratowski.length misc.dec_kuratowski.
 | 
					Require Import kuratowski.length misc.dec_kuratowski.
 | 
				
			||||||
From interfaces Require Import lattice_interface.
 | 
					From interfaces Require Import lattice_interface.
 | 
				
			||||||
From subobjects Require Import sub b_finite enumerated k_finite.
 | 
					From subobjects Require Import sub b_finite enumerated k_finite.
 | 
				
			||||||
(* we need so many imports :( *)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
(** * Definitions *)
 | 
					(** * Definitions *)
 | 
				
			||||||
Definition definition_2_1 := FSet.
 | 
					Definition definition_2_1 := FSet.
 | 
				
			||||||
@@ -113,7 +112,7 @@ Definition definition_5_2 `{Univalence} := sets.
 | 
				
			|||||||
Definition proposition_5_3 `{Univalence} := f_surjective.
 | 
					Definition proposition_5_3 `{Univalence} := f_surjective.
 | 
				
			||||||
Definition proposition_5_4 `{Univalence} (T : Type -> Type)
 | 
					Definition proposition_5_4 `{Univalence} (T : Type -> Type)
 | 
				
			||||||
  (f : forall A, T A -> FSet A) `{sets T f} (A : Type) := quotient_iso (f A).
 | 
					  (f : forall A, T A -> FSet A) `{sets T f} (A : Type) := quotient_iso (f A).
 | 
				
			||||||
(* TODO: Definition proposition_5_5 *)
 | 
					Definition proposition_5_5 `{Univalence} := same_class.
 | 
				
			||||||
Definition theorem_5_6 := transfer.
 | 
					Definition theorem_5_6 := transfer.
 | 
				
			||||||
Definition corollary_5_7 := refinement.
 | 
					Definition corollary_5_7 := refinement.
 | 
				
			||||||
(** ** Application *)
 | 
					(** ** Application *)
 | 
				
			||||||
@@ -133,5 +132,5 @@ Qed.
 | 
				
			|||||||
ming with Finite Sets" *)
 | 
					ming with Finite Sets" *)
 | 
				
			||||||
(** The Pauli group example *)
 | 
					(** The Pauli group example *)
 | 
				
			||||||
Definition misc_1 `{Univalence} := Pauli_mult_comm.
 | 
					Definition misc_1 `{Univalence} := Pauli_mult_comm.
 | 
				
			||||||
(** Decidility of prediates on finite sets is preserved by quantifiers *)
 | 
					(** Decidability of prediates on finite sets is preserved by quantifiers *)
 | 
				
			||||||
Definition misc_2 `{Univalence} {A : Type} (P : A -> hProp) `{forall a, Decidable (P a)} := all_decidable P.
 | 
					Definition misc_2 `{Univalence} {A : Type} (P : A -> hProp) `{forall a, Decidable (P a)} := all_decidable P.
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user