mirror of
https://github.com/nmvdw/HITs-Examples
synced 2025-11-03 15:13:51 +01:00
Some quickfixes
This commit is contained in:
@@ -2,7 +2,6 @@ Require Import FSets list_representation.
|
|||||||
Require Import kuratowski.length misc.dec_kuratowski.
|
Require Import kuratowski.length misc.dec_kuratowski.
|
||||||
From interfaces Require Import lattice_interface.
|
From interfaces Require Import lattice_interface.
|
||||||
From subobjects Require Import sub b_finite enumerated k_finite.
|
From subobjects Require Import sub b_finite enumerated k_finite.
|
||||||
(* we need so many imports :( *)
|
|
||||||
|
|
||||||
(** * Definitions *)
|
(** * Definitions *)
|
||||||
Definition definition_2_1 := FSet.
|
Definition definition_2_1 := FSet.
|
||||||
@@ -113,7 +112,7 @@ Definition definition_5_2 `{Univalence} := sets.
|
|||||||
Definition proposition_5_3 `{Univalence} := f_surjective.
|
Definition proposition_5_3 `{Univalence} := f_surjective.
|
||||||
Definition proposition_5_4 `{Univalence} (T : Type -> Type)
|
Definition proposition_5_4 `{Univalence} (T : Type -> Type)
|
||||||
(f : forall A, T A -> FSet A) `{sets T f} (A : Type) := quotient_iso (f A).
|
(f : forall A, T A -> FSet A) `{sets T f} (A : Type) := quotient_iso (f A).
|
||||||
(* TODO: Definition proposition_5_5 *)
|
Definition proposition_5_5 `{Univalence} := same_class.
|
||||||
Definition theorem_5_6 := transfer.
|
Definition theorem_5_6 := transfer.
|
||||||
Definition corollary_5_7 := refinement.
|
Definition corollary_5_7 := refinement.
|
||||||
(** ** Application *)
|
(** ** Application *)
|
||||||
@@ -133,5 +132,5 @@ Qed.
|
|||||||
ming with Finite Sets" *)
|
ming with Finite Sets" *)
|
||||||
(** The Pauli group example *)
|
(** The Pauli group example *)
|
||||||
Definition misc_1 `{Univalence} := Pauli_mult_comm.
|
Definition misc_1 `{Univalence} := Pauli_mult_comm.
|
||||||
(** Decidility of prediates on finite sets is preserved by quantifiers *)
|
(** Decidability of prediates on finite sets is preserved by quantifiers *)
|
||||||
Definition misc_2 `{Univalence} {A : Type} (P : A -> hProp) `{forall a, Decidable (P a)} := all_decidable P.
|
Definition misc_2 `{Univalence} {A : Type} (P : A -> hProp) `{forall a, Decidable (P a)} := all_decidable P.
|
||||||
|
|||||||
Reference in New Issue
Block a user