mirror of https://github.com/nmvdw/HITs-Examples
Merge branch 'classes' of https://github.com/nmvdw/HITs-Examples into classes
This commit is contained in:
commit
6a3965dfa7
|
@ -1,7 +1,9 @@
|
||||||
-R . "" COQC = hoqc COQDEP = hoqdep
|
-R . "" COQC = hoqc COQDEP = hoqdep
|
||||||
-R ../prelude ""
|
-R ../prelude ""
|
||||||
|
-R ../../HoTTClasses/theories HoTTClasses
|
||||||
lattice.v
|
lattice.v
|
||||||
disjunction.v
|
disjunction.v
|
||||||
|
classes.v
|
||||||
representations/bad.v
|
representations/bad.v
|
||||||
representations/definition.v
|
representations/definition.v
|
||||||
representations/cons_repr.v
|
representations/cons_repr.v
|
||||||
|
|
|
@ -0,0 +1,182 @@
|
||||||
|
Require Import HoTT.
|
||||||
|
From HoTTClasses Require Import interfaces.abstract_algebra tactics.ring_tac.
|
||||||
|
|
||||||
|
Section hProp_lattice.
|
||||||
|
Context `{Univalence}.
|
||||||
|
|
||||||
|
Definition lor (X Y : hProp) : hProp := BuildhProp (Trunc (-1) (sum X Y)).
|
||||||
|
Definition land (P Q : hProp) := BuildhProp (prod P Q).
|
||||||
|
Global Instance join_hprop : Join hProp := lor.
|
||||||
|
Global Instance meet_hprop : Meet hProp := land.
|
||||||
|
Global Instance land_associative : Associative land.
|
||||||
|
Proof.
|
||||||
|
intros P Q R.
|
||||||
|
apply path_hprop.
|
||||||
|
apply equiv_prod_assoc.
|
||||||
|
Defined.
|
||||||
|
Global Instance lor_associative : Associative lor.
|
||||||
|
Proof.
|
||||||
|
intros P Q R. symmetry.
|
||||||
|
apply path_iff_hprop ; cbn.
|
||||||
|
* simple refine (Trunc_ind _ _).
|
||||||
|
intros [xy | z] ; cbn.
|
||||||
|
+ simple refine (Trunc_ind _ _ xy).
|
||||||
|
intros [x | y].
|
||||||
|
++ apply (tr (inl x)).
|
||||||
|
++ apply (tr (inr (tr (inl y)))).
|
||||||
|
+ apply (tr (inr (tr (inr z)))).
|
||||||
|
* simple refine (Trunc_ind _ _).
|
||||||
|
intros [x | yz] ; cbn.
|
||||||
|
+ apply (tr (inl (tr (inl x)))).
|
||||||
|
+ simple refine (Trunc_ind _ _ yz).
|
||||||
|
intros [y | z].
|
||||||
|
++ apply (tr (inl (tr (inr y)))).
|
||||||
|
++ apply (tr (inr z)).
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Global Instance land_commutative : Commutative land.
|
||||||
|
Proof.
|
||||||
|
intros P Q.
|
||||||
|
apply path_hprop.
|
||||||
|
apply equiv_prod_symm.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Global Instance lor_commutative : Commutative lor.
|
||||||
|
Proof.
|
||||||
|
intros P Q. symmetry.
|
||||||
|
apply path_iff_hprop ; cbn.
|
||||||
|
* simple refine (Trunc_ind _ _).
|
||||||
|
intros [x | y].
|
||||||
|
+ apply (tr (inr x)).
|
||||||
|
+ apply (tr (inl y)).
|
||||||
|
* simple refine (Trunc_ind _ _).
|
||||||
|
intros [y | x].
|
||||||
|
+ apply (tr (inr y)).
|
||||||
|
+ apply (tr (inl x)).
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Global Instance joinsemilattice_hprop : JoinSemiLattice hProp.
|
||||||
|
Proof.
|
||||||
|
split.
|
||||||
|
- split; [ split | ]; apply _.
|
||||||
|
- compute-[lor]. intros P.
|
||||||
|
apply path_iff_hprop ; cbn.
|
||||||
|
+ simple refine (Trunc_ind _ _).
|
||||||
|
intros [x | x] ; apply x.
|
||||||
|
+ apply (fun x => tr (inl x)).
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Global Instance meetsemilattice_hprop : MeetSemiLattice hProp.
|
||||||
|
Proof.
|
||||||
|
split.
|
||||||
|
- split; [ split | ]; apply _.
|
||||||
|
- compute-[land]. intros x.
|
||||||
|
apply path_iff_hprop ; cbn.
|
||||||
|
+ intros [a b] ; apply a.
|
||||||
|
+ intros a ; apply (pair a a).
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Global Instance lor_land_absorbtion : Absorption join meet.
|
||||||
|
Proof.
|
||||||
|
intros P Q.
|
||||||
|
apply path_iff_hprop ; cbn.
|
||||||
|
- intros X ; strip_truncations.
|
||||||
|
destruct X as [Xx | [Xy1 Xy2]] ; assumption.
|
||||||
|
- intros X.
|
||||||
|
apply (tr (inl X)).
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Global Instance land_lor_absorbtion : Absorption meet join.
|
||||||
|
Proof.
|
||||||
|
intros P Q.
|
||||||
|
apply path_iff_hprop ; cbn.
|
||||||
|
- intros [X Y] ; strip_truncations.
|
||||||
|
assumption.
|
||||||
|
- intros X.
|
||||||
|
split.
|
||||||
|
* assumption.
|
||||||
|
* apply (tr (inl X)).
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Global Instance hprop_lattice : Lattice hProp.
|
||||||
|
Proof. split; apply _. Defined.
|
||||||
|
|
||||||
|
End hProp_lattice.
|
||||||
|
|
||||||
|
(* Section lattice_semiring. *)
|
||||||
|
(* Context `{A : Type}. *)
|
||||||
|
(* Context `{Lattice A}. *)
|
||||||
|
(* Context `{Bottom A}. *)
|
||||||
|
(* Instance join_plus : Plus A := join. *)
|
||||||
|
(* Instance meet_plus : Mult A := meet. *)
|
||||||
|
(* Instance bot_zero : Zero A := bottom. *)
|
||||||
|
|
||||||
|
(* End lattice_semiring. *)
|
||||||
|
|
||||||
|
Create HintDb lattice_hints.
|
||||||
|
Hint Resolve associativity : lattice_hints.
|
||||||
|
Hint Resolve commutativity : lattice_hints.
|
||||||
|
Hint Resolve absorption : lattice_hints.
|
||||||
|
Hint Resolve idempotency : lattice_hints.
|
||||||
|
|
||||||
|
Section fun_lattice.
|
||||||
|
Context {A B : Type}.
|
||||||
|
Context `{Univalence}.
|
||||||
|
Context `{Lattice B}.
|
||||||
|
|
||||||
|
Definition max_fun (f g : (A -> B)) (a : A) : B
|
||||||
|
:= f a ⊔ g a.
|
||||||
|
|
||||||
|
Definition min_fun (f g : (A -> B)) (a : A) : B
|
||||||
|
:= f a ⊓ g a.
|
||||||
|
|
||||||
|
Global Instance fun_join : Join (A -> B) := max_fun.
|
||||||
|
Global Instance fun_meet : Meet (A -> B) := min_fun.
|
||||||
|
|
||||||
|
Ltac solve_fun :=
|
||||||
|
compute ; intros ; apply path_forall ; intro ;
|
||||||
|
eauto 10 with lattice_hints typeclass_instances.
|
||||||
|
|
||||||
|
Global Instance fun_lattice : Lattice (A -> B).
|
||||||
|
Proof.
|
||||||
|
repeat (split; try (apply _ || solve_fun)).
|
||||||
|
Defined.
|
||||||
|
End fun_lattice.
|
||||||
|
|
||||||
|
Section sub_lattice.
|
||||||
|
Context {A : Type} {P : A -> hProp}.
|
||||||
|
Context `{Lattice A}.
|
||||||
|
Context {Hmax : forall x y, P x -> P y -> P (join x y)}.
|
||||||
|
Context {Hmin : forall x y, P x -> P y -> P (meet x y)}.
|
||||||
|
|
||||||
|
Definition AP : Type := sig P.
|
||||||
|
|
||||||
|
Instance join_sub : Join AP := fun (x y : AP) =>
|
||||||
|
match x, y with
|
||||||
|
| (a ; pa), (b ; pb) =>
|
||||||
|
(join a b ; Hmax a b pa pb)
|
||||||
|
end.
|
||||||
|
|
||||||
|
Instance meet_sub : Meet AP := fun (x y : AP) =>
|
||||||
|
match x, y with
|
||||||
|
| (a ; pa), (b ; pb) =>
|
||||||
|
(meet a b ; Hmin a b pa pb)
|
||||||
|
end.
|
||||||
|
|
||||||
|
Local Instance hprop_sub : forall c, IsHProp (P c).
|
||||||
|
Proof.
|
||||||
|
apply _.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Ltac solve_sub :=
|
||||||
|
repeat (intros [? ?])
|
||||||
|
; simple refine (path_sigma _ _ _ _ _); [ | apply hprop_sub ]
|
||||||
|
; compute
|
||||||
|
; eauto 10 with lattice_hints typeclass_instances.
|
||||||
|
|
||||||
|
Global Instance sub_lattice : Lattice AP.
|
||||||
|
Proof.
|
||||||
|
repeat (split; try (apply _ || solve_sub)).
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
End sub_lattice.
|
|
@ -0,0 +1,192 @@
|
||||||
|
Require Export HoTT.
|
||||||
|
Require Import HitTactics.
|
||||||
|
|
||||||
|
Module Export modulo.
|
||||||
|
|
||||||
|
Private Inductive Mod2 : Type0 :=
|
||||||
|
| Z : Mod2
|
||||||
|
| succ : Mod2 -> Mod2.
|
||||||
|
|
||||||
|
Axiom mod : Z = succ(succ Z).
|
||||||
|
|
||||||
|
Fixpoint Mod2_ind
|
||||||
|
(P : Mod2 -> Type)
|
||||||
|
(a : P Z)
|
||||||
|
(s : forall (n : Mod2), P n -> P (succ n))
|
||||||
|
(mod' : mod # a = s (succ Z) (s Z a))
|
||||||
|
(x : Mod2)
|
||||||
|
{struct x}
|
||||||
|
: P x
|
||||||
|
:=
|
||||||
|
(match x return _ -> P x with
|
||||||
|
| Z => fun _ => a
|
||||||
|
| succ n => fun _ => s n ((Mod2_ind P a s mod') n)
|
||||||
|
end) mod'.
|
||||||
|
|
||||||
|
Axiom Mod2_ind_beta_mod : forall
|
||||||
|
(P : Mod2 -> Type)
|
||||||
|
(a : P Z)
|
||||||
|
(s : forall (n : Mod2), P n -> P (succ n))
|
||||||
|
(mod' : mod # a = s (succ Z) (s Z a))
|
||||||
|
, apD (Mod2_ind P a s mod') mod = mod'.
|
||||||
|
|
||||||
|
Fixpoint Mod2_rec
|
||||||
|
(P : Type)
|
||||||
|
(a : P)
|
||||||
|
(s : P -> P)
|
||||||
|
(mod' : a = s (s a))
|
||||||
|
(x : Mod2)
|
||||||
|
{struct x}
|
||||||
|
: P
|
||||||
|
:=
|
||||||
|
(match x return _ -> P with
|
||||||
|
| Z => fun _ => a
|
||||||
|
| succ n => fun _ => s ((Mod2_rec P a s mod') n)
|
||||||
|
end) mod'.
|
||||||
|
|
||||||
|
Axiom Mod2_rec_beta_mod : forall
|
||||||
|
(P : Type)
|
||||||
|
(a : P)
|
||||||
|
(s : P -> P)
|
||||||
|
(mod' : a = s (s a))
|
||||||
|
, ap (Mod2_rec P a s mod') mod = mod'.
|
||||||
|
|
||||||
|
Instance: HitRecursion Mod2 := {
|
||||||
|
indTy := _; recTy := _;
|
||||||
|
H_inductor := Mod2_ind;
|
||||||
|
H_recursor := Mod2_rec }.
|
||||||
|
|
||||||
|
End modulo.
|
||||||
|
|
||||||
|
Definition negate : Mod2 -> Mod2.
|
||||||
|
Proof.
|
||||||
|
hrecursion.
|
||||||
|
- apply Z.
|
||||||
|
- intros. apply (succ H).
|
||||||
|
- simpl. apply mod.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
|
||||||
|
Definition Bool_to_Mod2 : Bool -> Mod2.
|
||||||
|
Proof.
|
||||||
|
intro b.
|
||||||
|
destruct b.
|
||||||
|
+ apply (succ Z).
|
||||||
|
+ apply Z.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Definition Mod2_to_Bool : Mod2 -> Bool.
|
||||||
|
Proof.
|
||||||
|
intro x.
|
||||||
|
hrecursion x.
|
||||||
|
- exact false.
|
||||||
|
- exact negb.
|
||||||
|
- simpl. reflexivity.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Theorem eq1 : forall n : Bool, Mod2_to_Bool (Bool_to_Mod2 n) = n.
|
||||||
|
Proof.
|
||||||
|
intro b.
|
||||||
|
destruct b; compute; reflexivity.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Theorem Bool_to_Mod2_negb : forall x : Bool,
|
||||||
|
succ (Bool_to_Mod2 x) = Bool_to_Mod2 (negb x).
|
||||||
|
Proof.
|
||||||
|
intros.
|
||||||
|
destruct x; compute.
|
||||||
|
+ apply mod^.
|
||||||
|
+ apply reflexivity.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Theorem eq2 : forall n : Mod2, Bool_to_Mod2 (Mod2_to_Bool n) = n.
|
||||||
|
Proof.
|
||||||
|
intro n.
|
||||||
|
hinduction n.
|
||||||
|
- reflexivity.
|
||||||
|
- intros n IHn.
|
||||||
|
symmetry. etransitivity. apply (ap succ IHn^).
|
||||||
|
etransitivity. apply Bool_to_Mod2_negb.
|
||||||
|
hott_simpl.
|
||||||
|
- rewrite @HoTT.Types.Paths.transport_paths_FlFr.
|
||||||
|
hott_simpl.
|
||||||
|
rewrite ap_compose.
|
||||||
|
enough (ap Mod2_to_Bool mod = idpath).
|
||||||
|
+ rewrite X. hott_simpl.
|
||||||
|
+ apply (Mod2_rec_beta_mod Bool false negb 1).
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Theorem adj :
|
||||||
|
forall x : Mod2, eq1 (Mod2_to_Bool x) = ap Mod2_to_Bool (eq2 x).
|
||||||
|
Proof.
|
||||||
|
intro x.
|
||||||
|
apply hset_bool.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Instance: IsEquiv Mod2_to_Bool.
|
||||||
|
Proof.
|
||||||
|
apply (BuildIsEquiv Mod2 Bool Mod2_to_Bool Bool_to_Mod2 eq1 eq2 adj).
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Definition Mod2_value : Mod2 <~> Bool := BuildEquiv _ _ Mod2_to_Bool _.
|
||||||
|
|
||||||
|
Instance mod2_hset : IsHSet Mod2.
|
||||||
|
Proof.
|
||||||
|
apply (trunc_equiv Bool Mod2_value^-1).
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Theorem modulo2 : forall n : Mod2, n = succ(succ n).
|
||||||
|
Proof.
|
||||||
|
hinduction.
|
||||||
|
- apply mod.
|
||||||
|
- intros n p.
|
||||||
|
apply (ap succ p).
|
||||||
|
- apply set_path2.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Definition plus : Mod2 -> Mod2 -> Mod2.
|
||||||
|
Proof.
|
||||||
|
intros n.
|
||||||
|
hrecursion.
|
||||||
|
- exact n.
|
||||||
|
- apply succ.
|
||||||
|
- apply modulo2.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Lemma plus_x_Z_x : forall x, plus x Z = x.
|
||||||
|
Proof.
|
||||||
|
hinduction; cbn.
|
||||||
|
- reflexivity.
|
||||||
|
- intros n. refine (ap succ).
|
||||||
|
- apply set_path2.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Lemma plus_S_x_S : forall x y,
|
||||||
|
plus (succ x) y = succ (plus x y).
|
||||||
|
Proof.
|
||||||
|
intros x.
|
||||||
|
hinduction; cbn.
|
||||||
|
- reflexivity.
|
||||||
|
- intros n Hn. refine (ap succ Hn).
|
||||||
|
- apply set_path2.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Lemma plus_x_x_Z : forall x, plus x x = Z.
|
||||||
|
Proof.
|
||||||
|
hinduction.
|
||||||
|
- reflexivity.
|
||||||
|
- intros n Hn. cbn.
|
||||||
|
refine (ap succ (plus_S_x_S n n) @ _).
|
||||||
|
refine (ap (succ o succ) Hn @ _).
|
||||||
|
apply mod^.
|
||||||
|
- apply set_path2.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Definition mult : Mod2 -> Mod2 -> Mod2.
|
||||||
|
intros x. hrecursion.
|
||||||
|
- exact Z.
|
||||||
|
- intros y. exact (plus x y).
|
||||||
|
- simpl.
|
||||||
|
refine (_ @ ap (plus x) (plus_x_Z_x _)^).
|
||||||
|
apply (plus_x_x_Z x)^.
|
||||||
|
Defined.
|
|
@ -0,0 +1,13 @@
|
||||||
|
Require Import HoTT HitTactics.
|
||||||
|
Require Export Mod2.
|
||||||
|
|
||||||
|
From HoTTClasses Require Import interfaces.abstract_algebra tactics.ring_tac.
|
||||||
|
|
||||||
|
Section Mod2_ring.
|
||||||
|
|
||||||
|
Instance Mod2_plus : Plus Mod2 := Mod2.plus.
|
||||||
|
Instance Mod2_mult : Mult Mod2 := Mod2.mult.
|
||||||
|
Instance Mod2_zero : Zero Mod2 := Z.
|
||||||
|
Instance Mod2_one : One Mod2 := succ Z.
|
||||||
|
|
||||||
|
End Mod2_ring.
|
|
@ -0,0 +1,5 @@
|
||||||
|
-R . "" COQC = hoqc COQDEP = hoqdep
|
||||||
|
-R ../prelude ""
|
||||||
|
-R ../../HoTTClasses/theories HoTTClasses
|
||||||
|
Mod2.v
|
||||||
|
Mod2_ring.v
|
Loading…
Reference in New Issue