1
0
mirror of https://github.com/nmvdw/HITs-Examples synced 2025-12-16 07:03:51 +01:00
This commit is contained in:
Niels
2017-09-07 15:44:22 +02:00
parent 4ae639ace3
commit 6c86d0c524
9 changed files with 25 additions and 318 deletions

View File

@@ -0,0 +1,78 @@
Require Import HoTT.
Require Import set_names lattice_interface lattice_examples prelude.
Section subobjects.
Variable A : Type.
Definition Sub := A -> hProp.
Global Instance sub_empty : hasEmpty Sub := fun _ => False_hp.
Global Instance sub_union : hasUnion Sub := max_fun.
Global Instance sub_intersection : hasIntersection Sub := min_fun.
Global Instance sub_singleton : hasSingleton Sub A
:= fun a b => BuildhProp (Trunc (-1) (b = a)).
Global Instance sub_membership : hasMembership Sub A := fun a X => X a.
Global Instance sub_comprehension : hasComprehension Sub A
:= fun ϕ X a => BuildhProp (X a * (ϕ a = true)).
Global Instance sub_subset `{Univalence} : hasSubset Sub
:= fun X Y => BuildhProp (forall a, X a -> Y a).
End subobjects.
Section sub_classes.
Context {A : Type}.
Variable C : (A -> hProp) -> hProp.
Context `{Univalence}.
Instance subobject_lattice : Lattice (Sub A).
Proof.
apply _.
Defined.
Definition closedUnion := forall X Y, C X -> C Y -> C (X Y).
Definition closedIntersection := forall X Y, C X -> C Y -> C (X Y).
Definition closedEmpty := C .
Definition closedSingleton := forall a, C {|a|}.
Definition hasDecidableEmpty := forall X, C X -> hor (X = ) (hexists (fun a => a X)).
End sub_classes.
Section isIn.
Variable A : Type.
Variable C : (A -> hProp) -> hProp.
Context `{Univalence}.
Context {HS : closedSingleton C} {HIn : forall X, C X -> forall a, Decidable (X a)}.
Theorem decidable_A_isIn (a b : A) : Decidable (Trunc (-1) (b = a)).
Proof.
destruct (HIn {|a|} (HS a) b).
- apply (inl t).
- refine (inr(fun p => _)).
strip_truncations.
contradiction (n (tr p)).
Defined.
End isIn.
Section intersect.
Variable A : Type.
Variable C : (Sub A) -> hProp.
Context `{Univalence}
{HI : closedIntersection C} {HE : closedEmpty C}
{HS : closedSingleton C} {HDE : hasDecidableEmpty C}.
Theorem decidable_A_intersect (a b : A) : Decidable (Trunc (-1) (b = a)).
Proof.
unfold Decidable.
pose (HI {|a|} {|b|} (HS a) (HS b)) as IntAB.
pose (HDE ({|a|} {|b|}) IntAB) as IntE.
refine (Trunc_rec _ IntE) ; intros [p | p].
- refine (inr(fun q => _)).
strip_truncations.
refine (transport (fun Z => a Z) p (tr idpath, tr q^)).
- strip_truncations.
destruct p as [? [t1 t2]].
strip_truncations.
apply (inl (tr (t2^ @ t1))).
Defined.
End intersect.