mirror of https://github.com/nmvdw/HITs-Examples
Added lattice constructions
This commit is contained in:
parent
4141f9d456
commit
77a449e68b
|
@ -51,8 +51,8 @@ Section Lattice.
|
|||
associative_max :> Associative max ;
|
||||
idempotent_min :> Idempotent min ;
|
||||
idempotent_max :> Idempotent max ;
|
||||
neutralL_min :> NeutralL max empty ;
|
||||
neutralR_min :> NeutralR max empty ;
|
||||
neutralL_max :> NeutralL max empty ;
|
||||
neutralR_max :> NeutralR max empty ;
|
||||
absorption_min_max :> Absorption min max ;
|
||||
absorption_max_min :> Absorption max min
|
||||
}.
|
||||
|
@ -64,7 +64,7 @@ Arguments Lattice {_} _ _ _.
|
|||
|
||||
Section BoolLattice.
|
||||
|
||||
Ltac solve :=
|
||||
Ltac solve_bool :=
|
||||
let x := fresh in
|
||||
repeat (intro x ; destruct x)
|
||||
; compute
|
||||
|
@ -73,52 +73,52 @@ Section BoolLattice.
|
|||
|
||||
Instance orb_com : Commutative orb.
|
||||
Proof.
|
||||
solve.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
Instance andb_com : Commutative andb.
|
||||
Proof.
|
||||
solve.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
Instance orb_assoc : Associative orb.
|
||||
Proof.
|
||||
solve.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
Instance andb_assoc : Associative andb.
|
||||
Proof.
|
||||
solve.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
Instance orb_idem : Idempotent orb.
|
||||
Proof.
|
||||
solve.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
Instance andb_idem : Idempotent andb.
|
||||
Proof.
|
||||
solve.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
Instance orb_nl : NeutralL orb false.
|
||||
Proof.
|
||||
solve.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
Instance orb_nr : NeutralR orb false.
|
||||
Proof.
|
||||
solve.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
Instance bool_absorption_orb_andb : Absorption orb andb.
|
||||
Proof.
|
||||
solve.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
Instance bool_absorption_andb_orb : Absorption andb orb.
|
||||
Proof.
|
||||
solve.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
Global Instance lattice_bool : Lattice andb orb false :=
|
||||
|
@ -128,42 +128,246 @@ Section BoolLattice.
|
|||
associative_max := _ ;
|
||||
idempotent_min := _ ;
|
||||
idempotent_max := _ ;
|
||||
neutralL_min := _ ;
|
||||
neutralR_min := _ ;
|
||||
neutralL_max := _ ;
|
||||
neutralR_max := _ ;
|
||||
absorption_min_max := _ ;
|
||||
absorption_max_min := _
|
||||
}.
|
||||
|
||||
Definition and_true : forall b, andb b true = b.
|
||||
Proof.
|
||||
solve.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
Definition and_false : forall b, andb b false = false.
|
||||
Proof.
|
||||
solve.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
Definition dist₁ : forall b₁ b₂ b₃,
|
||||
andb b₁ (orb b₂ b₃) = orb (andb b₁ b₂) (andb b₁ b₃).
|
||||
Proof.
|
||||
solve.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
Definition dist₂ : forall b₁ b₂ b₃,
|
||||
orb b₁ (andb b₂ b₃) = andb (orb b₁ b₂) (orb b₁ b₃).
|
||||
Proof.
|
||||
solve.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
Definition max_min : forall b₁ b₂,
|
||||
orb (andb b₁ b₂) b₁ = b₁.
|
||||
Proof.
|
||||
solve.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
End BoolLattice.
|
||||
|
||||
Section fun_lattice.
|
||||
Context {A B : Type} {maxB minB : B -> B -> B} {botB : B}.
|
||||
Context `{Lattice B minB maxB botB}.
|
||||
Context `{Funext}.
|
||||
|
||||
Definition max_fun (f g : (A -> B)) (a : A) : B
|
||||
:= maxB (f a) (g a).
|
||||
|
||||
Definition min_fun (f g : (A -> B)) (a : A) : B
|
||||
:= minB (f a) (g a).
|
||||
|
||||
Definition bot_fun (a : A) : B
|
||||
:= botB.
|
||||
|
||||
Hint Unfold max_fun min_fun bot_fun.
|
||||
|
||||
Ltac solve_fun := compute ; intros ; apply path_forall ; intro.
|
||||
|
||||
Instance max_fun_com : Commutative max_fun.
|
||||
Proof.
|
||||
solve_fun.
|
||||
refine (commutative_max _ _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance min_fun_com : Commutative min_fun.
|
||||
Proof.
|
||||
solve_fun.
|
||||
refine (commutative_min _ _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance max_fun_assoc : Associative max_fun.
|
||||
Proof.
|
||||
solve_fun.
|
||||
refine (associative_max _ _ _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance min_fun_assoc : Associative min_fun.
|
||||
Proof.
|
||||
solve_fun.
|
||||
refine (associative_min _ _ _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance max_fun_idem : Idempotent max_fun.
|
||||
Proof.
|
||||
solve_fun.
|
||||
refine (idempotent_max _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance min_fun_idem : Idempotent min_fun.
|
||||
Proof.
|
||||
solve_fun.
|
||||
refine (idempotent_min _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance max_fun_nl : NeutralL max_fun bot_fun.
|
||||
Proof.
|
||||
solve_fun.
|
||||
simple refine (neutralL_max _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance max_fun_nr : NeutralR max_fun bot_fun.
|
||||
Proof.
|
||||
solve_fun.
|
||||
simple refine (neutralR_max _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance absorption_max_fun_min_fun : Absorption max_fun min_fun.
|
||||
Proof.
|
||||
solve_fun.
|
||||
simple refine (absorption_max_min _ _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance absorption_min_fun_max_fun : Absorption min_fun max_fun.
|
||||
Proof.
|
||||
solve_fun.
|
||||
simple refine (absorption_min_max _ _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Global Instance lattice_fun : Lattice min_fun max_fun bot_fun :=
|
||||
{ commutative_min := _ ;
|
||||
commutative_max := _ ;
|
||||
associative_min := _ ;
|
||||
associative_max := _ ;
|
||||
idempotent_min := _ ;
|
||||
idempotent_max := _ ;
|
||||
neutralL_max := _ ;
|
||||
neutralR_max := _ ;
|
||||
absorption_min_max := _ ;
|
||||
absorption_max_min := _
|
||||
}.
|
||||
End fun_lattice.
|
||||
|
||||
Section sub_lattice.
|
||||
Context {A : Type} {P : A -> hProp} {maxA minA : A -> A -> A} {botA : A}.
|
||||
Context {Hmax : forall x y, P x -> P y -> P (maxA x y)}.
|
||||
Context {Hmin : forall x y, P x -> P y -> P (minA x y)}.
|
||||
Context {Hbot : P botA}.
|
||||
Context `{Lattice A minA maxA botA}.
|
||||
|
||||
Definition AP : Type := sig P.
|
||||
|
||||
Definition botAP : AP := (botA ; Hbot).
|
||||
|
||||
Definition maxAP (x y : AP) : AP :=
|
||||
match x with
|
||||
| (a ; pa) => match y with
|
||||
| (b ; pb) => (maxA a b ; Hmax a b pa pb)
|
||||
end
|
||||
end.
|
||||
|
||||
Definition minAP (x y : AP) : AP :=
|
||||
match x with
|
||||
| (a ; pa) => match y with
|
||||
| (b ; pb) => (minA a b ; Hmin a b pa pb)
|
||||
end
|
||||
end.
|
||||
|
||||
Hint Unfold maxAP minAP botAP.
|
||||
|
||||
Instance hprop_sub : forall c, IsHProp (P c).
|
||||
Proof.
|
||||
apply _.
|
||||
Defined.
|
||||
|
||||
Ltac solve_sub :=
|
||||
let x := fresh in
|
||||
repeat (intro x ; destruct x)
|
||||
; simple refine (path_sigma _ _ _ _ _) ; try (apply hprop_sub).
|
||||
|
||||
Instance max_sub_com : Commutative maxAP.
|
||||
Proof.
|
||||
solve_sub.
|
||||
refine (commutative_max _ _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance min_sub_com : Commutative minAP.
|
||||
Proof.
|
||||
solve_sub.
|
||||
refine (commutative_min _ _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance max_sub_assoc : Associative maxAP.
|
||||
Proof.
|
||||
solve_sub.
|
||||
refine (associative_max _ _ _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance min_sub_assoc : Associative minAP.
|
||||
Proof.
|
||||
solve_sub.
|
||||
refine (associative_min _ _ _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance max_sub_idem : Idempotent maxAP.
|
||||
Proof.
|
||||
solve_sub.
|
||||
refine (idempotent_max _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance min_sub_idem : Idempotent minAP.
|
||||
Proof.
|
||||
solve_sub.
|
||||
refine (idempotent_min _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance max_sub_nl : NeutralL maxAP botAP.
|
||||
Proof.
|
||||
solve_sub.
|
||||
simple refine (neutralL_max _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance max_sub_nr : NeutralR maxAP botAP.
|
||||
Proof.
|
||||
solve_sub.
|
||||
simple refine (neutralR_max _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance absorption_max_sub_min_sub : Absorption maxAP minAP.
|
||||
Proof.
|
||||
solve_sub.
|
||||
simple refine (absorption_max_min _ _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance absorption_min_sub_max_sub : Absorption minAP maxAP.
|
||||
Proof.
|
||||
solve_sub.
|
||||
simple refine (absorption_min_max _ _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Global Instance lattice_sub : Lattice minAP maxAP botAP :=
|
||||
{ commutative_min := _ ;
|
||||
commutative_max := _ ;
|
||||
associative_min := _ ;
|
||||
associative_max := _ ;
|
||||
idempotent_min := _ ;
|
||||
idempotent_max := _ ;
|
||||
neutralL_max := _ ;
|
||||
neutralR_max := _ ;
|
||||
absorption_min_max := _ ;
|
||||
absorption_max_min := _
|
||||
}.
|
||||
|
||||
End sub_lattice.
|
||||
|
||||
Hint Resolve
|
||||
orb_com andb_com orb_assoc andb_assoc orb_idem andb_idem orb_nl orb_nr
|
||||
bool_absorption_orb_andb bool_absorption_andb_orb and_true and_false
|
||||
|
|
Loading…
Reference in New Issue