mirror of https://github.com/nmvdw/HITs-Examples
Changed lattice
This commit is contained in:
parent
77a449e68b
commit
7d74b45fc3
|
@ -16,8 +16,8 @@ fsets/properties_decidable.v
|
|||
fsets/length.v
|
||||
fsets/monad.v
|
||||
FSets.v
|
||||
Sub.v
|
||||
implementations/lists.v
|
||||
variations/enumerated.v
|
||||
variations/k_finite.v
|
||||
#empty_set.v
|
||||
#ordered.v
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
Require Import HoTT.
|
||||
Require Import lattice.
|
||||
|
||||
Definition lor (X Y : hProp) : hProp := BuildhProp (Trunc (-1) (sum X Y)).
|
||||
Instance lor : maximum hProp := fun X Y => BuildhProp (Trunc (-1) (sum X Y)).
|
||||
|
||||
Delimit Scope logic_scope with L.
|
||||
Notation "A ∨ B" := (lor A B) (at level 20, right associativity) : logic_scope.
|
||||
|
@ -75,7 +75,8 @@ Section lor_props.
|
|||
|
||||
End lor_props.
|
||||
|
||||
Definition land (X Y : hProp) : hProp := BuildhProp (prod X Y).
|
||||
Instance land : minimum hProp := fun X Y => BuildhProp (prod X Y).
|
||||
Instance lfalse : bottom hProp := False_hp.
|
||||
|
||||
Notation "A ∧ B" := (land A B) (at level 20, right associativity) : logic_scope.
|
||||
Arguments land _%L _%L.
|
||||
|
@ -84,7 +85,7 @@ Open Scope logic_scope.
|
|||
Section hPropLattice.
|
||||
Context `{Univalence}.
|
||||
|
||||
Global Instance lor_commutative : Commutative lor.
|
||||
Instance lor_commutative : Commutative lor.
|
||||
Proof.
|
||||
unfold Commutative.
|
||||
intros.
|
||||
|
@ -131,21 +132,21 @@ Section hPropLattice.
|
|||
- intros a ; apply (pair a a).
|
||||
Defined.
|
||||
|
||||
Instance lor_neutrall : NeutralL lor False_hp.
|
||||
Instance lor_neutrall : NeutralL lor lfalse.
|
||||
Proof.
|
||||
unfold NeutralL.
|
||||
intros.
|
||||
apply lor_nl.
|
||||
Defined.
|
||||
|
||||
Instance lor_neutralr : NeutralR lor False_hp.
|
||||
Instance lor_neutralr : NeutralR lor lfalse.
|
||||
Proof.
|
||||
unfold NeutralR.
|
||||
intros.
|
||||
apply lor_nr.
|
||||
Defined.
|
||||
|
||||
Instance bool_absorption_orb_andb : Absorption lor land.
|
||||
Instance absorption_orb_andb : Absorption lor land.
|
||||
Proof.
|
||||
unfold Absorption.
|
||||
intros.
|
||||
|
@ -156,7 +157,7 @@ Section hPropLattice.
|
|||
apply (tr (inl X)).
|
||||
Defined.
|
||||
|
||||
Instance bool_absorption_andb_orb : Absorption land lor.
|
||||
Instance absorption_andb_orb : Absorption land lor.
|
||||
Proof.
|
||||
unfold Absorption.
|
||||
intros.
|
||||
|
@ -169,15 +170,15 @@ Section hPropLattice.
|
|||
* apply (tr (inl X)).
|
||||
Defined.
|
||||
|
||||
Global Instance lattice_hprop : Lattice land lor False_hp :=
|
||||
Global Instance lattice_hprop : Lattice hProp :=
|
||||
{ commutative_min := _ ;
|
||||
commutative_max := _ ;
|
||||
associative_min := _ ;
|
||||
associative_max := _ ;
|
||||
idempotent_min := _ ;
|
||||
idempotent_max := _ ;
|
||||
neutralL_min := _ ;
|
||||
neutralR_min := _ ;
|
||||
neutralL_max := _ ;
|
||||
neutralR_max := _ ;
|
||||
absorption_min_max := _ ;
|
||||
absorption_max_min := _
|
||||
}.
|
||||
|
|
|
@ -75,11 +75,11 @@ Proof.
|
|||
- apply true.
|
||||
- apply (fun _ => false).
|
||||
- apply andb.
|
||||
- intros. symmetry. eauto with bool_lattice_hints.
|
||||
- eauto with bool_lattice_hints.
|
||||
- eauto with bool_lattice_hints.
|
||||
- eauto with bool_lattice_hints.
|
||||
- eauto with bool_lattice_hints.
|
||||
- intros. symmetry. eauto with lattice_hints typeclass_instances.
|
||||
- eauto with bool_lattice_hints typeclass_instances.
|
||||
- eauto with bool_lattice_hints typeclass_instances.
|
||||
- eauto with bool_lattice_hints typeclass_instances.
|
||||
- eauto with bool_lattice_hints typeclass_instances.
|
||||
Defined.
|
||||
|
||||
End operations.
|
||||
|
|
|
@ -12,7 +12,14 @@ Section decidable_A.
|
|||
intros a.
|
||||
hinduction ; try (intros ; apply path_ishprop).
|
||||
- apply _.
|
||||
- intros. apply _.
|
||||
- intros.
|
||||
unfold Decidable.
|
||||
destruct (dec (a = a0)) as [p | np].
|
||||
* apply (inl (tr p)).
|
||||
* right.
|
||||
intro p.
|
||||
strip_truncations.
|
||||
contradiction.
|
||||
- intros. apply _.
|
||||
Defined.
|
||||
|
||||
|
|
|
@ -7,12 +7,10 @@ Section operations_isIn.
|
|||
Context {A : Type}.
|
||||
Context `{Univalence}.
|
||||
|
||||
|
||||
|
||||
Lemma union_idem : forall x: FSet A, U x x = x.
|
||||
Proof.
|
||||
hinduction;
|
||||
try (intros ; apply set_path2) ; cbn.
|
||||
try (intros ; apply set_path2).
|
||||
- apply nl.
|
||||
- apply idem.
|
||||
- intros x y P Q.
|
||||
|
@ -23,7 +21,7 @@ try (intros ; apply set_path2) ; cbn.
|
|||
rewrite (comm y x).
|
||||
rewrite <- (assoc x y y).
|
||||
f_ap.
|
||||
Defined.
|
||||
Qed.
|
||||
|
||||
(** ** Properties about subset relation. *)
|
||||
Lemma subset_union (X Y : FSet A) :
|
||||
|
@ -37,7 +35,7 @@ hinduction X; try (intros; apply path_forall; intro; apply set_path2).
|
|||
contradiction.
|
||||
+ intro a0.
|
||||
simple refine (Trunc_ind _ _).
|
||||
intro p ; cbn.
|
||||
intro p ; simpl.
|
||||
rewrite p; apply idem.
|
||||
+ intros X1 X2 IH1 IH2.
|
||||
simple refine (Trunc_ind _ _).
|
||||
|
@ -83,8 +81,8 @@ Lemma comprehension_or : forall ϕ ψ (x: FSet A),
|
|||
Proof.
|
||||
intros ϕ ψ.
|
||||
hinduction; try (intros; apply set_path2).
|
||||
- cbn. apply (union_idem _)^.
|
||||
- cbn. intros.
|
||||
- apply (union_idem _)^.
|
||||
- intros.
|
||||
destruct (ϕ a) ; destruct (ψ a) ; symmetry.
|
||||
* apply union_idem.
|
||||
* apply nr.
|
||||
|
|
|
@ -133,8 +133,15 @@ Proof.
|
|||
Defined.
|
||||
End operations_isIn.
|
||||
|
||||
Global Opaque isIn_b.
|
||||
(* Some suporting tactics *)
|
||||
(*
|
||||
Ltac simplify_isIn :=
|
||||
repeat (rewrite union_isIn
|
||||
|| rewrite L_isIn_b_aa
|
||||
|| rewrite intersection_isIn
|
||||
|| rewrite comprehension_isIn).
|
||||
*)
|
||||
|
||||
Ltac simplify_isIn :=
|
||||
repeat (rewrite union_isIn
|
||||
|| rewrite L_isIn_b_aa
|
||||
|
@ -142,7 +149,7 @@ Ltac simplify_isIn :=
|
|||
|| rewrite comprehension_isIn).
|
||||
|
||||
Ltac toBool := try (intro) ;
|
||||
intros ; apply ext ; intros ; simplify_isIn ; eauto with bool_lattice_hints.
|
||||
intros ; apply ext ; intros ; simplify_isIn ; eauto with bool_lattice_hints typeclass_instances.
|
||||
|
||||
Section SetLattice.
|
||||
|
||||
|
@ -150,70 +157,15 @@ Section SetLattice.
|
|||
Context {A_deceq : DecidablePaths A}.
|
||||
Context `{Univalence}.
|
||||
|
||||
Instance fset_union_com : Commutative (@U A).
|
||||
Proof.
|
||||
toBool.
|
||||
Defined.
|
||||
Instance fset_max : maximum (FSet A) := U.
|
||||
Instance fset_min : minimum (FSet A) := intersection.
|
||||
Instance fset_bot : bottom (FSet A) := E.
|
||||
|
||||
Instance fset_intersection_com : Commutative intersection.
|
||||
Instance lattice_fset : Lattice (FSet A).
|
||||
Proof.
|
||||
toBool.
|
||||
split ; toBool.
|
||||
Defined.
|
||||
|
||||
Instance fset_union_assoc : Associative (@U A).
|
||||
Proof.
|
||||
toBool.
|
||||
Defined.
|
||||
|
||||
Instance fset_intersection_assoc : Associative intersection.
|
||||
Proof.
|
||||
toBool.
|
||||
Defined.
|
||||
|
||||
Instance fset_union_idem : Idempotent (@U A).
|
||||
Proof.
|
||||
exact union_idem.
|
||||
Defined.
|
||||
|
||||
Instance fset_intersection_idem : Idempotent intersection.
|
||||
Proof.
|
||||
toBool.
|
||||
Defined.
|
||||
|
||||
Instance fset_union_nl : NeutralL (@U A) (@E A).
|
||||
Proof.
|
||||
toBool.
|
||||
Defined.
|
||||
|
||||
Instance fset_union_nr : NeutralR (@U A) (@E A).
|
||||
Proof.
|
||||
toBool.
|
||||
Defined.
|
||||
|
||||
Instance fset_absorption_intersection_union : Absorption (@U A) intersection.
|
||||
Proof.
|
||||
toBool.
|
||||
Defined.
|
||||
|
||||
Instance fset_absorption_union_intersection : Absorption intersection (@U A).
|
||||
Proof.
|
||||
toBool.
|
||||
Defined.
|
||||
|
||||
Instance lattice_fset : Lattice intersection (@U A) (@E A) :=
|
||||
{
|
||||
commutative_min := _ ;
|
||||
commutative_max := _ ;
|
||||
associative_min := _ ;
|
||||
associative_max := _ ;
|
||||
idempotent_min := _ ;
|
||||
idempotent_max := _ ;
|
||||
neutralL_min := _ ;
|
||||
neutralR_min := _ ;
|
||||
absorption_min_max := _ ;
|
||||
absorption_max_min := _
|
||||
}.
|
||||
|
||||
End SetLattice.
|
||||
|
||||
(* Comprehension properties *)
|
||||
|
@ -236,13 +188,13 @@ Section comprehension_properties.
|
|||
Lemma comprehension_false Y : comprehension (fun (_ : A) => false) Y = E.
|
||||
Proof.
|
||||
toBool.
|
||||
Defined.
|
||||
Qed.
|
||||
|
||||
Lemma comprehension_all : forall (X : FSet A),
|
||||
comprehension (fun a => isIn_b a X) X = X.
|
||||
Proof.
|
||||
toBool.
|
||||
Defined.
|
||||
Qed.
|
||||
|
||||
Lemma comprehension_subset : forall ϕ (X : FSet A),
|
||||
U (comprehension ϕ X) X = X.
|
||||
|
|
|
@ -1,7 +1,24 @@
|
|||
(* Typeclass for lattices *)
|
||||
Require Import HoTT.
|
||||
|
||||
Definition operation (A : Type) := A -> A -> A.
|
||||
Section binary_operation.
|
||||
Variable A : Type.
|
||||
|
||||
Definition operation := A -> A -> A.
|
||||
|
||||
Class maximum :=
|
||||
max_L : operation.
|
||||
|
||||
Class minimum :=
|
||||
min_L : operation.
|
||||
|
||||
Class bottom :=
|
||||
empty : A.
|
||||
End binary_operation.
|
||||
|
||||
Arguments max_L {_} _ _.
|
||||
Arguments min_L {_} _ _.
|
||||
Arguments empty {_}.
|
||||
|
||||
Section Defs.
|
||||
Variable A : Type.
|
||||
|
@ -19,7 +36,7 @@ Section Defs.
|
|||
Variable g : operation A.
|
||||
|
||||
Class Absorption :=
|
||||
absrob : forall x y, f x (g x y) = x.
|
||||
absorb : forall x y, f x (g x y) = x.
|
||||
|
||||
Variable n : A.
|
||||
|
||||
|
@ -40,27 +57,32 @@ Arguments Absorption {_} _ _.
|
|||
|
||||
Section Lattice.
|
||||
Variable A : Type.
|
||||
Variable min max : operation A.
|
||||
Variable empty : A.
|
||||
Context {max_L : maximum A} {min_L : minimum A} {empty_L : bottom A}.
|
||||
|
||||
Class Lattice :=
|
||||
{
|
||||
commutative_min :> Commutative min ;
|
||||
commutative_max :> Commutative max ;
|
||||
associative_min :> Associative min ;
|
||||
associative_max :> Associative max ;
|
||||
idempotent_min :> Idempotent min ;
|
||||
idempotent_max :> Idempotent max ;
|
||||
neutralL_max :> NeutralL max empty ;
|
||||
neutralR_max :> NeutralR max empty ;
|
||||
absorption_min_max :> Absorption min max ;
|
||||
absorption_max_min :> Absorption max min
|
||||
commutative_min :> Commutative min_L ;
|
||||
commutative_max :> Commutative max_L ;
|
||||
associative_min :> Associative min_L ;
|
||||
associative_max :> Associative max_L ;
|
||||
idempotent_min :> Idempotent min_L ;
|
||||
idempotent_max :> Idempotent max_L ;
|
||||
neutralL_max :> NeutralL max_L empty_L ;
|
||||
neutralR_max :> NeutralR max_L empty_L ;
|
||||
absorption_min_max :> Absorption min_L max_L ;
|
||||
absorption_max_min :> Absorption max_L min_L
|
||||
}.
|
||||
|
||||
End Lattice.
|
||||
|
||||
Arguments Lattice {_} _ _ _.
|
||||
Arguments Lattice _ {_} {_} {_}.
|
||||
|
||||
Create HintDb lattice_hints.
|
||||
Hint Resolve associativity : lattice_hints.
|
||||
Hint Resolve commutative : lattice_hints.
|
||||
Hint Resolve absorb : lattice_hints.
|
||||
Hint Resolve idempotency : lattice_hints.
|
||||
Hint Resolve neutralityL : lattice_hints.
|
||||
Hint Resolve neutralityR : lattice_hints.
|
||||
|
||||
Section BoolLattice.
|
||||
|
||||
|
@ -71,69 +93,15 @@ Section BoolLattice.
|
|||
; auto
|
||||
; try contradiction.
|
||||
|
||||
Instance orb_com : Commutative orb.
|
||||
Proof.
|
||||
solve_bool.
|
||||
Defined.
|
||||
Instance maximum_bool : maximum Bool := orb.
|
||||
Instance minimum_bool : minimum Bool := andb.
|
||||
Instance bottom_bool : bottom Bool := false.
|
||||
|
||||
Instance andb_com : Commutative andb.
|
||||
Global Instance lattice_bool : Lattice Bool.
|
||||
Proof.
|
||||
solve_bool.
|
||||
split ; solve_bool.
|
||||
Defined.
|
||||
|
||||
Instance orb_assoc : Associative orb.
|
||||
Proof.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
Instance andb_assoc : Associative andb.
|
||||
Proof.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
Instance orb_idem : Idempotent orb.
|
||||
Proof.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
Instance andb_idem : Idempotent andb.
|
||||
Proof.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
Instance orb_nl : NeutralL orb false.
|
||||
Proof.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
Instance orb_nr : NeutralR orb false.
|
||||
Proof.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
Instance bool_absorption_orb_andb : Absorption orb andb.
|
||||
Proof.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
Instance bool_absorption_andb_orb : Absorption andb orb.
|
||||
Proof.
|
||||
solve_bool.
|
||||
Defined.
|
||||
|
||||
Global Instance lattice_bool : Lattice andb orb false :=
|
||||
{ commutative_min := _ ;
|
||||
commutative_max := _ ;
|
||||
associative_min := _ ;
|
||||
associative_max := _ ;
|
||||
idempotent_min := _ ;
|
||||
idempotent_max := _ ;
|
||||
neutralL_max := _ ;
|
||||
neutralR_max := _ ;
|
||||
absorption_min_max := _ ;
|
||||
absorption_max_min := _
|
||||
}.
|
||||
|
||||
Definition and_true : forall b, andb b true = b.
|
||||
Proof.
|
||||
solve_bool.
|
||||
|
@ -165,124 +133,53 @@ Section BoolLattice.
|
|||
End BoolLattice.
|
||||
|
||||
Section fun_lattice.
|
||||
Context {A B : Type} {maxB minB : B -> B -> B} {botB : B}.
|
||||
Context `{Lattice B minB maxB botB}.
|
||||
Context {A B : Type}.
|
||||
Context `{Lattice B}.
|
||||
Context `{Funext}.
|
||||
|
||||
Definition max_fun (f g : (A -> B)) (a : A) : B
|
||||
:= maxB (f a) (g a).
|
||||
Global Instance max_fun : maximum (A -> B) :=
|
||||
fun (f g : A -> B) (a : A) => max_L0 (f a) (g a).
|
||||
|
||||
Definition min_fun (f g : (A -> B)) (a : A) : B
|
||||
:= minB (f a) (g a).
|
||||
Global Instance min_fun : minimum (A -> B) :=
|
||||
fun (f g : A -> B) (a : A) => min_L0 (f a) (g a).
|
||||
|
||||
Definition bot_fun (a : A) : B
|
||||
:= botB.
|
||||
Global Instance bot_fun : bottom (A -> B)
|
||||
:= fun _ => empty_L.
|
||||
|
||||
Hint Unfold max_fun min_fun bot_fun.
|
||||
Ltac solve_fun :=
|
||||
compute ; intros ; apply path_forall ; intro ;
|
||||
eauto with lattice_hints typeclass_instances.
|
||||
|
||||
Ltac solve_fun := compute ; intros ; apply path_forall ; intro.
|
||||
|
||||
Instance max_fun_com : Commutative max_fun.
|
||||
Global Instance lattice_fun : Lattice (A -> B).
|
||||
Proof.
|
||||
solve_fun.
|
||||
refine (commutative_max _ _ _ _ _ _).
|
||||
split ; solve_fun.
|
||||
Defined.
|
||||
|
||||
Instance min_fun_com : Commutative min_fun.
|
||||
Proof.
|
||||
solve_fun.
|
||||
refine (commutative_min _ _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance max_fun_assoc : Associative max_fun.
|
||||
Proof.
|
||||
solve_fun.
|
||||
refine (associative_max _ _ _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance min_fun_assoc : Associative min_fun.
|
||||
Proof.
|
||||
solve_fun.
|
||||
refine (associative_min _ _ _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance max_fun_idem : Idempotent max_fun.
|
||||
Proof.
|
||||
solve_fun.
|
||||
refine (idempotent_max _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance min_fun_idem : Idempotent min_fun.
|
||||
Proof.
|
||||
solve_fun.
|
||||
refine (idempotent_min _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance max_fun_nl : NeutralL max_fun bot_fun.
|
||||
Proof.
|
||||
solve_fun.
|
||||
simple refine (neutralL_max _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance max_fun_nr : NeutralR max_fun bot_fun.
|
||||
Proof.
|
||||
solve_fun.
|
||||
simple refine (neutralR_max _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance absorption_max_fun_min_fun : Absorption max_fun min_fun.
|
||||
Proof.
|
||||
solve_fun.
|
||||
simple refine (absorption_max_min _ _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance absorption_min_fun_max_fun : Absorption min_fun max_fun.
|
||||
Proof.
|
||||
solve_fun.
|
||||
simple refine (absorption_min_max _ _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Global Instance lattice_fun : Lattice min_fun max_fun bot_fun :=
|
||||
{ commutative_min := _ ;
|
||||
commutative_max := _ ;
|
||||
associative_min := _ ;
|
||||
associative_max := _ ;
|
||||
idempotent_min := _ ;
|
||||
idempotent_max := _ ;
|
||||
neutralL_max := _ ;
|
||||
neutralR_max := _ ;
|
||||
absorption_min_max := _ ;
|
||||
absorption_max_min := _
|
||||
}.
|
||||
End fun_lattice.
|
||||
|
||||
Section sub_lattice.
|
||||
Context {A : Type} {P : A -> hProp} {maxA minA : A -> A -> A} {botA : A}.
|
||||
Context {Hmax : forall x y, P x -> P y -> P (maxA x y)}.
|
||||
Context {Hmin : forall x y, P x -> P y -> P (minA x y)}.
|
||||
Context {Hbot : P botA}.
|
||||
Context `{Lattice A minA maxA botA}.
|
||||
Context {A : Type} {P : A -> hProp}.
|
||||
Context `{Lattice A}.
|
||||
Context {Hmax : forall x y, P x -> P y -> P (max_L0 x y)}.
|
||||
Context {Hmin : forall x y, P x -> P y -> P (min_L0 x y)}.
|
||||
Context {Hbot : P empty_L}.
|
||||
|
||||
Definition AP : Type := sig P.
|
||||
|
||||
Definition botAP : AP := (botA ; Hbot).
|
||||
Instance botAP : bottom AP := (empty_L ; Hbot).
|
||||
|
||||
Definition maxAP (x y : AP) : AP :=
|
||||
match x with
|
||||
| (a ; pa) => match y with
|
||||
| (b ; pb) => (maxA a b ; Hmax a b pa pb)
|
||||
end
|
||||
Instance maxAP : maximum AP :=
|
||||
fun x y =>
|
||||
match x, y with
|
||||
| (a ; pa), (b ; pb) => (max_L0 a b ; Hmax a b pa pb)
|
||||
end.
|
||||
|
||||
Definition minAP (x y : AP) : AP :=
|
||||
match x with
|
||||
| (a ; pa) => match y with
|
||||
| (b ; pb) => (minA a b ; Hmin a b pa pb)
|
||||
end
|
||||
Instance minAP : minimum AP :=
|
||||
fun x y =>
|
||||
match x, y with
|
||||
| (a ; pa), (b ; pb) => (min_L0 a b ; Hmin a b pa pb)
|
||||
end.
|
||||
|
||||
Hint Unfold maxAP minAP botAP.
|
||||
|
||||
Instance hprop_sub : forall c, IsHProp (P c).
|
||||
Proof.
|
||||
apply _.
|
||||
|
@ -291,85 +188,28 @@ Section sub_lattice.
|
|||
Ltac solve_sub :=
|
||||
let x := fresh in
|
||||
repeat (intro x ; destruct x)
|
||||
; simple refine (path_sigma _ _ _ _ _) ; try (apply hprop_sub).
|
||||
; simple refine (path_sigma _ _ _ _ _)
|
||||
; simpl
|
||||
; try (apply hprop_sub)
|
||||
; eauto 3 with lattice_hints typeclass_instances.
|
||||
|
||||
Instance max_sub_com : Commutative maxAP.
|
||||
Global Instance lattice_sub : Lattice AP.
|
||||
Proof.
|
||||
solve_sub.
|
||||
refine (commutative_max _ _ _ _ _ _).
|
||||
split ; solve_sub.
|
||||
Defined.
|
||||
|
||||
Instance min_sub_com : Commutative minAP.
|
||||
Proof.
|
||||
solve_sub.
|
||||
refine (commutative_min _ _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance max_sub_assoc : Associative maxAP.
|
||||
Proof.
|
||||
solve_sub.
|
||||
refine (associative_max _ _ _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance min_sub_assoc : Associative minAP.
|
||||
Proof.
|
||||
solve_sub.
|
||||
refine (associative_min _ _ _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance max_sub_idem : Idempotent maxAP.
|
||||
Proof.
|
||||
solve_sub.
|
||||
refine (idempotent_max _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance min_sub_idem : Idempotent minAP.
|
||||
Proof.
|
||||
solve_sub.
|
||||
refine (idempotent_min _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance max_sub_nl : NeutralL maxAP botAP.
|
||||
Proof.
|
||||
solve_sub.
|
||||
simple refine (neutralL_max _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance max_sub_nr : NeutralR maxAP botAP.
|
||||
Proof.
|
||||
solve_sub.
|
||||
simple refine (neutralR_max _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance absorption_max_sub_min_sub : Absorption maxAP minAP.
|
||||
Proof.
|
||||
solve_sub.
|
||||
simple refine (absorption_max_min _ _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Instance absorption_min_sub_max_sub : Absorption minAP maxAP.
|
||||
Proof.
|
||||
solve_sub.
|
||||
simple refine (absorption_min_max _ _ _ _ _ _).
|
||||
Defined.
|
||||
|
||||
Global Instance lattice_sub : Lattice minAP maxAP botAP :=
|
||||
{ commutative_min := _ ;
|
||||
commutative_max := _ ;
|
||||
associative_min := _ ;
|
||||
associative_max := _ ;
|
||||
idempotent_min := _ ;
|
||||
idempotent_max := _ ;
|
||||
neutralL_max := _ ;
|
||||
neutralR_max := _ ;
|
||||
absorption_min_max := _ ;
|
||||
absorption_max_min := _
|
||||
}.
|
||||
|
||||
End sub_lattice.
|
||||
|
||||
Create HintDb bool_lattice_hints.
|
||||
Hint Resolve associativity : bool_lattice_hints.
|
||||
Hint Resolve commutative : bool_lattice_hints.
|
||||
Hint Resolve absorb : bool_lattice_hints.
|
||||
Hint Resolve idempotency : bool_lattice_hints.
|
||||
Hint Resolve neutralityL : bool_lattice_hints.
|
||||
Hint Resolve neutralityR : bool_lattice_hints.
|
||||
|
||||
Hint Resolve
|
||||
orb_com andb_com orb_assoc andb_assoc orb_idem andb_idem orb_nl orb_nr
|
||||
bool_absorption_orb_andb bool_absorption_andb_orb and_true and_false
|
||||
associativity
|
||||
and_true and_false
|
||||
dist₁ dist₂ max_min
|
||||
: bool_lattice_hints.
|
||||
|
|
Loading…
Reference in New Issue