Changed lattice

This commit is contained in:
Niels 2017-08-03 12:21:34 +02:00
parent 77a449e68b
commit 7d74b45fc3
7 changed files with 375 additions and 577 deletions

View File

@ -16,8 +16,8 @@ fsets/properties_decidable.v
fsets/length.v
fsets/monad.v
FSets.v
Sub.v
implementations/lists.v
variations/enumerated.v
variations/k_finite.v
#empty_set.v
#ordered.v

View File

@ -2,7 +2,7 @@
Require Import HoTT.
Require Import lattice.
Definition lor (X Y : hProp) : hProp := BuildhProp (Trunc (-1) (sum X Y)).
Instance lor : maximum hProp := fun X Y => BuildhProp (Trunc (-1) (sum X Y)).
Delimit Scope logic_scope with L.
Notation "A B" := (lor A B) (at level 20, right associativity) : logic_scope.
@ -75,7 +75,8 @@ Section lor_props.
End lor_props.
Definition land (X Y : hProp) : hProp := BuildhProp (prod X Y).
Instance land : minimum hProp := fun X Y => BuildhProp (prod X Y).
Instance lfalse : bottom hProp := False_hp.
Notation "A ∧ B" := (land A B) (at level 20, right associativity) : logic_scope.
Arguments land _%L _%L.
@ -84,7 +85,7 @@ Open Scope logic_scope.
Section hPropLattice.
Context `{Univalence}.
Global Instance lor_commutative : Commutative lor.
Instance lor_commutative : Commutative lor.
Proof.
unfold Commutative.
intros.
@ -131,21 +132,21 @@ Section hPropLattice.
- intros a ; apply (pair a a).
Defined.
Instance lor_neutrall : NeutralL lor False_hp.
Instance lor_neutrall : NeutralL lor lfalse.
Proof.
unfold NeutralL.
intros.
apply lor_nl.
Defined.
Instance lor_neutralr : NeutralR lor False_hp.
Instance lor_neutralr : NeutralR lor lfalse.
Proof.
unfold NeutralR.
intros.
apply lor_nr.
Defined.
Instance bool_absorption_orb_andb : Absorption lor land.
Instance absorption_orb_andb : Absorption lor land.
Proof.
unfold Absorption.
intros.
@ -156,7 +157,7 @@ Section hPropLattice.
apply (tr (inl X)).
Defined.
Instance bool_absorption_andb_orb : Absorption land lor.
Instance absorption_andb_orb : Absorption land lor.
Proof.
unfold Absorption.
intros.
@ -169,15 +170,15 @@ Section hPropLattice.
* apply (tr (inl X)).
Defined.
Global Instance lattice_hprop : Lattice land lor False_hp :=
Global Instance lattice_hprop : Lattice hProp :=
{ commutative_min := _ ;
commutative_max := _ ;
associative_min := _ ;
associative_max := _ ;
idempotent_min := _ ;
idempotent_max := _ ;
neutralL_min := _ ;
neutralR_min := _ ;
neutralL_max := _ ;
neutralR_max := _ ;
absorption_min_max := _ ;
absorption_max_min := _
}.

View File

@ -75,11 +75,11 @@ Proof.
- apply true.
- apply (fun _ => false).
- apply andb.
- intros. symmetry. eauto with bool_lattice_hints.
- eauto with bool_lattice_hints.
- eauto with bool_lattice_hints.
- eauto with bool_lattice_hints.
- eauto with bool_lattice_hints.
- intros. symmetry. eauto with lattice_hints typeclass_instances.
- eauto with bool_lattice_hints typeclass_instances.
- eauto with bool_lattice_hints typeclass_instances.
- eauto with bool_lattice_hints typeclass_instances.
- eauto with bool_lattice_hints typeclass_instances.
Defined.
End operations.

View File

@ -12,7 +12,14 @@ Section decidable_A.
intros a.
hinduction ; try (intros ; apply path_ishprop).
- apply _.
- intros. apply _.
- intros.
unfold Decidable.
destruct (dec (a = a0)) as [p | np].
* apply (inl (tr p)).
* right.
intro p.
strip_truncations.
contradiction.
- intros. apply _.
Defined.

View File

@ -7,12 +7,10 @@ Section operations_isIn.
Context {A : Type}.
Context `{Univalence}.
Lemma union_idem : forall x: FSet A, U x x = x.
Proof.
hinduction;
try (intros ; apply set_path2) ; cbn.
try (intros ; apply set_path2).
- apply nl.
- apply idem.
- intros x y P Q.
@ -23,7 +21,7 @@ try (intros ; apply set_path2) ; cbn.
rewrite (comm y x).
rewrite <- (assoc x y y).
f_ap.
Defined.
Qed.
(** ** Properties about subset relation. *)
Lemma subset_union (X Y : FSet A) :
@ -37,7 +35,7 @@ hinduction X; try (intros; apply path_forall; intro; apply set_path2).
contradiction.
+ intro a0.
simple refine (Trunc_ind _ _).
intro p ; cbn.
intro p ; simpl.
rewrite p; apply idem.
+ intros X1 X2 IH1 IH2.
simple refine (Trunc_ind _ _).
@ -83,8 +81,8 @@ Lemma comprehension_or : forall ϕ ψ (x: FSet A),
Proof.
intros ϕ ψ.
hinduction; try (intros; apply set_path2).
- cbn. apply (union_idem _)^.
- cbn. intros.
- apply (union_idem _)^.
- intros.
destruct (ϕ a) ; destruct (ψ a) ; symmetry.
* apply union_idem.
* apply nr.

View File

@ -133,8 +133,15 @@ Proof.
Defined.
End operations_isIn.
Global Opaque isIn_b.
(* Some suporting tactics *)
(*
Ltac simplify_isIn :=
repeat (rewrite union_isIn
|| rewrite L_isIn_b_aa
|| rewrite intersection_isIn
|| rewrite comprehension_isIn).
*)
Ltac simplify_isIn :=
repeat (rewrite union_isIn
|| rewrite L_isIn_b_aa
@ -142,7 +149,7 @@ Ltac simplify_isIn :=
|| rewrite comprehension_isIn).
Ltac toBool := try (intro) ;
intros ; apply ext ; intros ; simplify_isIn ; eauto with bool_lattice_hints.
intros ; apply ext ; intros ; simplify_isIn ; eauto with bool_lattice_hints typeclass_instances.
Section SetLattice.
@ -150,70 +157,15 @@ Section SetLattice.
Context {A_deceq : DecidablePaths A}.
Context `{Univalence}.
Instance fset_union_com : Commutative (@U A).
Proof.
toBool.
Defined.
Instance fset_max : maximum (FSet A) := U.
Instance fset_min : minimum (FSet A) := intersection.
Instance fset_bot : bottom (FSet A) := E.
Instance fset_intersection_com : Commutative intersection.
Instance lattice_fset : Lattice (FSet A).
Proof.
toBool.
split ; toBool.
Defined.
Instance fset_union_assoc : Associative (@U A).
Proof.
toBool.
Defined.
Instance fset_intersection_assoc : Associative intersection.
Proof.
toBool.
Defined.
Instance fset_union_idem : Idempotent (@U A).
Proof.
exact union_idem.
Defined.
Instance fset_intersection_idem : Idempotent intersection.
Proof.
toBool.
Defined.
Instance fset_union_nl : NeutralL (@U A) (@E A).
Proof.
toBool.
Defined.
Instance fset_union_nr : NeutralR (@U A) (@E A).
Proof.
toBool.
Defined.
Instance fset_absorption_intersection_union : Absorption (@U A) intersection.
Proof.
toBool.
Defined.
Instance fset_absorption_union_intersection : Absorption intersection (@U A).
Proof.
toBool.
Defined.
Instance lattice_fset : Lattice intersection (@U A) (@E A) :=
{
commutative_min := _ ;
commutative_max := _ ;
associative_min := _ ;
associative_max := _ ;
idempotent_min := _ ;
idempotent_max := _ ;
neutralL_min := _ ;
neutralR_min := _ ;
absorption_min_max := _ ;
absorption_max_min := _
}.
End SetLattice.
(* Comprehension properties *)
@ -236,13 +188,13 @@ Section comprehension_properties.
Lemma comprehension_false Y : comprehension (fun (_ : A) => false) Y = E.
Proof.
toBool.
Defined.
Qed.
Lemma comprehension_all : forall (X : FSet A),
comprehension (fun a => isIn_b a X) X = X.
Proof.
toBool.
Defined.
Qed.
Lemma comprehension_subset : forall ϕ (X : FSet A),
U (comprehension ϕ X) X = X.

View File

@ -1,7 +1,24 @@
(* Typeclass for lattices *)
Require Import HoTT.
Definition operation (A : Type) := A -> A -> A.
Section binary_operation.
Variable A : Type.
Definition operation := A -> A -> A.
Class maximum :=
max_L : operation.
Class minimum :=
min_L : operation.
Class bottom :=
empty : A.
End binary_operation.
Arguments max_L {_} _ _.
Arguments min_L {_} _ _.
Arguments empty {_}.
Section Defs.
Variable A : Type.
@ -19,7 +36,7 @@ Section Defs.
Variable g : operation A.
Class Absorption :=
absrob : forall x y, f x (g x y) = x.
absorb : forall x y, f x (g x y) = x.
Variable n : A.
@ -40,27 +57,32 @@ Arguments Absorption {_} _ _.
Section Lattice.
Variable A : Type.
Variable min max : operation A.
Variable empty : A.
Context {max_L : maximum A} {min_L : minimum A} {empty_L : bottom A}.
Class Lattice :=
{
commutative_min :> Commutative min ;
commutative_max :> Commutative max ;
associative_min :> Associative min ;
associative_max :> Associative max ;
idempotent_min :> Idempotent min ;
idempotent_max :> Idempotent max ;
neutralL_max :> NeutralL max empty ;
neutralR_max :> NeutralR max empty ;
absorption_min_max :> Absorption min max ;
absorption_max_min :> Absorption max min
commutative_min :> Commutative min_L ;
commutative_max :> Commutative max_L ;
associative_min :> Associative min_L ;
associative_max :> Associative max_L ;
idempotent_min :> Idempotent min_L ;
idempotent_max :> Idempotent max_L ;
neutralL_max :> NeutralL max_L empty_L ;
neutralR_max :> NeutralR max_L empty_L ;
absorption_min_max :> Absorption min_L max_L ;
absorption_max_min :> Absorption max_L min_L
}.
End Lattice.
Arguments Lattice {_} _ _ _.
Arguments Lattice _ {_} {_} {_}.
Create HintDb lattice_hints.
Hint Resolve associativity : lattice_hints.
Hint Resolve commutative : lattice_hints.
Hint Resolve absorb : lattice_hints.
Hint Resolve idempotency : lattice_hints.
Hint Resolve neutralityL : lattice_hints.
Hint Resolve neutralityR : lattice_hints.
Section BoolLattice.
@ -71,69 +93,15 @@ Section BoolLattice.
; auto
; try contradiction.
Instance orb_com : Commutative orb.
Proof.
solve_bool.
Defined.
Instance maximum_bool : maximum Bool := orb.
Instance minimum_bool : minimum Bool := andb.
Instance bottom_bool : bottom Bool := false.
Instance andb_com : Commutative andb.
Global Instance lattice_bool : Lattice Bool.
Proof.
solve_bool.
split ; solve_bool.
Defined.
Instance orb_assoc : Associative orb.
Proof.
solve_bool.
Defined.
Instance andb_assoc : Associative andb.
Proof.
solve_bool.
Defined.
Instance orb_idem : Idempotent orb.
Proof.
solve_bool.
Defined.
Instance andb_idem : Idempotent andb.
Proof.
solve_bool.
Defined.
Instance orb_nl : NeutralL orb false.
Proof.
solve_bool.
Defined.
Instance orb_nr : NeutralR orb false.
Proof.
solve_bool.
Defined.
Instance bool_absorption_orb_andb : Absorption orb andb.
Proof.
solve_bool.
Defined.
Instance bool_absorption_andb_orb : Absorption andb orb.
Proof.
solve_bool.
Defined.
Global Instance lattice_bool : Lattice andb orb false :=
{ commutative_min := _ ;
commutative_max := _ ;
associative_min := _ ;
associative_max := _ ;
idempotent_min := _ ;
idempotent_max := _ ;
neutralL_max := _ ;
neutralR_max := _ ;
absorption_min_max := _ ;
absorption_max_min := _
}.
Definition and_true : forall b, andb b true = b.
Proof.
solve_bool.
@ -165,124 +133,53 @@ Section BoolLattice.
End BoolLattice.
Section fun_lattice.
Context {A B : Type} {maxB minB : B -> B -> B} {botB : B}.
Context `{Lattice B minB maxB botB}.
Context {A B : Type}.
Context `{Lattice B}.
Context `{Funext}.
Definition max_fun (f g : (A -> B)) (a : A) : B
:= maxB (f a) (g a).
Global Instance max_fun : maximum (A -> B) :=
fun (f g : A -> B) (a : A) => max_L0 (f a) (g a).
Definition min_fun (f g : (A -> B)) (a : A) : B
:= minB (f a) (g a).
Global Instance min_fun : minimum (A -> B) :=
fun (f g : A -> B) (a : A) => min_L0 (f a) (g a).
Definition bot_fun (a : A) : B
:= botB.
Global Instance bot_fun : bottom (A -> B)
:= fun _ => empty_L.
Hint Unfold max_fun min_fun bot_fun.
Ltac solve_fun :=
compute ; intros ; apply path_forall ; intro ;
eauto with lattice_hints typeclass_instances.
Ltac solve_fun := compute ; intros ; apply path_forall ; intro.
Instance max_fun_com : Commutative max_fun.
Global Instance lattice_fun : Lattice (A -> B).
Proof.
solve_fun.
refine (commutative_max _ _ _ _ _ _).
split ; solve_fun.
Defined.
Instance min_fun_com : Commutative min_fun.
Proof.
solve_fun.
refine (commutative_min _ _ _ _ _ _).
Defined.
Instance max_fun_assoc : Associative max_fun.
Proof.
solve_fun.
refine (associative_max _ _ _ _ _ _ _).
Defined.
Instance min_fun_assoc : Associative min_fun.
Proof.
solve_fun.
refine (associative_min _ _ _ _ _ _ _).
Defined.
Instance max_fun_idem : Idempotent max_fun.
Proof.
solve_fun.
refine (idempotent_max _ _ _ _ _).
Defined.
Instance min_fun_idem : Idempotent min_fun.
Proof.
solve_fun.
refine (idempotent_min _ _ _ _ _).
Defined.
Instance max_fun_nl : NeutralL max_fun bot_fun.
Proof.
solve_fun.
simple refine (neutralL_max _ _ _ _ _).
Defined.
Instance max_fun_nr : NeutralR max_fun bot_fun.
Proof.
solve_fun.
simple refine (neutralR_max _ _ _ _ _).
Defined.
Instance absorption_max_fun_min_fun : Absorption max_fun min_fun.
Proof.
solve_fun.
simple refine (absorption_max_min _ _ _ _ _ _).
Defined.
Instance absorption_min_fun_max_fun : Absorption min_fun max_fun.
Proof.
solve_fun.
simple refine (absorption_min_max _ _ _ _ _ _).
Defined.
Global Instance lattice_fun : Lattice min_fun max_fun bot_fun :=
{ commutative_min := _ ;
commutative_max := _ ;
associative_min := _ ;
associative_max := _ ;
idempotent_min := _ ;
idempotent_max := _ ;
neutralL_max := _ ;
neutralR_max := _ ;
absorption_min_max := _ ;
absorption_max_min := _
}.
End fun_lattice.
Section sub_lattice.
Context {A : Type} {P : A -> hProp} {maxA minA : A -> A -> A} {botA : A}.
Context {Hmax : forall x y, P x -> P y -> P (maxA x y)}.
Context {Hmin : forall x y, P x -> P y -> P (minA x y)}.
Context {Hbot : P botA}.
Context `{Lattice A minA maxA botA}.
Context {A : Type} {P : A -> hProp}.
Context `{Lattice A}.
Context {Hmax : forall x y, P x -> P y -> P (max_L0 x y)}.
Context {Hmin : forall x y, P x -> P y -> P (min_L0 x y)}.
Context {Hbot : P empty_L}.
Definition AP : Type := sig P.
Definition botAP : AP := (botA ; Hbot).
Instance botAP : bottom AP := (empty_L ; Hbot).
Definition maxAP (x y : AP) : AP :=
match x with
| (a ; pa) => match y with
| (b ; pb) => (maxA a b ; Hmax a b pa pb)
end
Instance maxAP : maximum AP :=
fun x y =>
match x, y with
| (a ; pa), (b ; pb) => (max_L0 a b ; Hmax a b pa pb)
end.
Definition minAP (x y : AP) : AP :=
match x with
| (a ; pa) => match y with
| (b ; pb) => (minA a b ; Hmin a b pa pb)
end
Instance minAP : minimum AP :=
fun x y =>
match x, y with
| (a ; pa), (b ; pb) => (min_L0 a b ; Hmin a b pa pb)
end.
Hint Unfold maxAP minAP botAP.
Instance hprop_sub : forall c, IsHProp (P c).
Proof.
apply _.
@ -291,85 +188,28 @@ Section sub_lattice.
Ltac solve_sub :=
let x := fresh in
repeat (intro x ; destruct x)
; simple refine (path_sigma _ _ _ _ _) ; try (apply hprop_sub).
; simple refine (path_sigma _ _ _ _ _)
; simpl
; try (apply hprop_sub)
; eauto 3 with lattice_hints typeclass_instances.
Instance max_sub_com : Commutative maxAP.
Global Instance lattice_sub : Lattice AP.
Proof.
solve_sub.
refine (commutative_max _ _ _ _ _ _).
split ; solve_sub.
Defined.
Instance min_sub_com : Commutative minAP.
Proof.
solve_sub.
refine (commutative_min _ _ _ _ _ _).
Defined.
Instance max_sub_assoc : Associative maxAP.
Proof.
solve_sub.
refine (associative_max _ _ _ _ _ _ _).
Defined.
Instance min_sub_assoc : Associative minAP.
Proof.
solve_sub.
refine (associative_min _ _ _ _ _ _ _).
Defined.
Instance max_sub_idem : Idempotent maxAP.
Proof.
solve_sub.
refine (idempotent_max _ _ _ _ _).
Defined.
Instance min_sub_idem : Idempotent minAP.
Proof.
solve_sub.
refine (idempotent_min _ _ _ _ _).
Defined.
Instance max_sub_nl : NeutralL maxAP botAP.
Proof.
solve_sub.
simple refine (neutralL_max _ _ _ _ _).
Defined.
Instance max_sub_nr : NeutralR maxAP botAP.
Proof.
solve_sub.
simple refine (neutralR_max _ _ _ _ _).
Defined.
Instance absorption_max_sub_min_sub : Absorption maxAP minAP.
Proof.
solve_sub.
simple refine (absorption_max_min _ _ _ _ _ _).
Defined.
Instance absorption_min_sub_max_sub : Absorption minAP maxAP.
Proof.
solve_sub.
simple refine (absorption_min_max _ _ _ _ _ _).
Defined.
Global Instance lattice_sub : Lattice minAP maxAP botAP :=
{ commutative_min := _ ;
commutative_max := _ ;
associative_min := _ ;
associative_max := _ ;
idempotent_min := _ ;
idempotent_max := _ ;
neutralL_max := _ ;
neutralR_max := _ ;
absorption_min_max := _ ;
absorption_max_min := _
}.
End sub_lattice.
Create HintDb bool_lattice_hints.
Hint Resolve associativity : bool_lattice_hints.
Hint Resolve commutative : bool_lattice_hints.
Hint Resolve absorb : bool_lattice_hints.
Hint Resolve idempotency : bool_lattice_hints.
Hint Resolve neutralityL : bool_lattice_hints.
Hint Resolve neutralityR : bool_lattice_hints.
Hint Resolve
orb_com andb_com orb_assoc andb_assoc orb_idem andb_idem orb_nl orb_nr
bool_absorption_orb_andb bool_absorption_andb_orb and_true and_false
associativity
and_true and_false
dist dist max_min
: bool_lattice_hints.