From 86b4f80aa5e05d3d3117a7714be2c9c0bb0b0749 Mon Sep 17 00:00:00 2001 From: Niels Date: Fri, 4 Aug 2017 20:54:53 +0200 Subject: [PATCH] Added proof that Z' is HSet. --- int/Integers.v | 13 ++++++------- 1 file changed, 6 insertions(+), 7 deletions(-) diff --git a/int/Integers.v b/int/Integers.v index 1b53378..e06192f 100644 --- a/int/Integers.v +++ b/int/Integers.v @@ -650,17 +650,16 @@ Section Isomorphic. apply concat_1p. Defined. - Definition biinv_Z'_to_Int : BiInv Z'_to_Int := - ((Int_to_Z' ; Z'_to_Int_to_Z'), (Int_to_Z' ; Int_to_Z'_to_Int)). + Definition biinv_Int_to_Z' : BiInv Int_to_Z' := + ((Z'_to_Int ; Int_to_Z'_to_Int), (Z'_to_Int ; Z'_to_Int_to_Z')). - Definition equiv_Z'_to_Int : IsEquiv Z'_to_Int := - isequiv_biinv _ biinv_Z'_to_Int. + Instance equiv_Int_to_Z' : IsEquiv Int_to_Z' := + isequiv_biinv _ biinv_Int_to_Z'. Instance Z'_set : IsHSet Z'. Proof. - intros x y p q. - - Admitted. + apply (trunc_equiv Int Int_to_Z'). + Defined Definition Z_to_Z' : Z -> Z'. Proof.