A cons-based induction principle for FSets

This commit is contained in:
Dan Frumin 2017-08-19 18:55:47 +02:00
parent 39d888951e
commit 8a1405a1d8
2 changed files with 84 additions and 26 deletions

View File

@ -8,6 +8,12 @@ Section Iso.
Context {A : Type}.
Context `{Univalence}.
Definition dupl' (a : A) (X : FSet A) :
{|a|} {|a|} X = {|a|} X := assoc _ _ _ @ ap ( X) (idem _).
Definition comm' (a b : A) (X : FSet A) :
{|a|} {|b|} X = {|b|} {|a|} X :=
assoc _ _ _ @ ap ( X) (comm _ _) @ (assoc _ _ _)^.
Definition FSetC_to_FSet: FSetC A -> FSet A.
Proof.
hrecursion.
@ -15,15 +21,9 @@ Section Iso.
- intros a x.
apply ({|a|} x).
- intros. cbn.
etransitivity. apply assoc.
apply (ap ( x)).
apply idem.
apply dupl'.
- intros. cbn.
etransitivity. apply assoc.
etransitivity. refine (ap ( x) _ ).
apply FSet.comm.
symmetry.
apply assoc.
apply comm'.
Defined.
Definition FSet_to_FSetC: FSet A -> FSetC A.
@ -45,7 +45,9 @@ Section Iso.
intros x.
hrecursion x; try (intros; apply path_forall; intro; apply set_path2).
- intros. symmetry. apply nl.
- intros a x HR y. unfold union, fsetc_union in *. rewrite HR. apply assoc.
- intros a x HR y. unfold union, fsetc_union in *.
refine (_ @ assoc _ _ _).
apply (ap ({|a|} ) (HR _)).
Defined.
Lemma repr_iso_id_l: forall (x: FSet A), FSetC_to_FSet (FSet_to_FSetC x) = x.
@ -53,7 +55,10 @@ Section Iso.
hinduction; try (intros; apply set_path2).
- reflexivity.
- intro. apply nr.
- intros x y p q. rewrite append_union, p, q. reflexivity.
- intros x y p q.
refine (append_union _ _ @ _).
refine (ap ( _) p @ _).
apply (ap (_ ) q).
Defined.
Lemma repr_iso_id_r: forall (x: FSetC A), FSet_to_FSetC (FSetC_to_FSet x) = x.
@ -89,4 +94,66 @@ Section Iso.
apply (equiv_path _ _)^-1.
exact repr_iso.
Defined.
Theorem FSet_cons_ind (P : FSet A -> Type)
(Pset : forall (X : FSet A), IsHSet (P X))
(Pempt : P )
(Pcons : forall (a : A) (X : FSet A), P X -> P ({|a|} X))
(Pdupl : forall (a : A) (X : FSet A) (px : P X),
transport P (dupl' a X) (Pcons a _ (Pcons a X px)) = Pcons a X px)
(Pcomm : forall (a b : A) (X : FSet A) (px : P X),
transport P (comm' a b X) (Pcons a _ (Pcons b X px)) = Pcons b _ (Pcons a X px)) :
forall X, P X.
Proof.
intros X.
refine (transport P (repr_iso_id_l X) _).
simple refine (FSetC_ind A (fun Z => P (FSetC_to_FSet Z)) _ _ _ _ _ (FSet_to_FSetC X)); simpl.
- apply Pempt.
- intros a Y HY. by apply Pcons.
- intros a Y PY. cbn.
refine (_ @ (Pdupl _ _ _)).
etransitivity.
{ apply (transport_compose _ FSetC_to_FSet (dupl a Y)). }
refine (ap (fun z => transport P z _) _).
apply FSetC_rec_beta_dupl.
- intros a b Y PY. cbn.
refine (_ @ (Pcomm _ _ _ _)).
etransitivity.
{ apply (transport_compose _ FSetC_to_FSet (FSetC.comm a b Y)). }
refine (ap (fun z => transport P z _) _).
apply FSetC_rec_beta_comm.
Defined.
Theorem FSet_cons_ind_beta_empty (P : FSet A -> Type)
(Pset : forall (X : FSet A), IsHSet (P X))
(Pempt : P )
(Pcons : forall (a : A) (X : FSet A), P X -> P ({|a|} X))
(Pdupl : forall (a : A) (X : FSet A) (px : P X),
transport P (dupl' a X) (Pcons a _ (Pcons a X px)) = Pcons a X px)
(Pcomm : forall (a b : A) (X : FSet A) (px : P X),
transport P (comm' a b X) (Pcons a _ (Pcons b X px)) = Pcons b _ (Pcons a X px)) :
FSet_cons_ind P Pset Pempt Pcons Pdupl Pcomm = Pempt.
Proof. by compute. Defined.
(* TODO *)
(* Theorem FSet_cons_ind_beta_cons (P : FSet A -> Type) *)
(* (Pset : forall (X : FSet A), IsHSet (P X)) *)
(* (Pempt : P ∅) *)
(* (Pcons : forall (a : A) (X : FSet A), P X -> P ({|a|} X)) *)
(* (Pdupl : forall (a : A) (X : FSet A) (px : P X), *)
(* transport P (dupl' a X) (Pcons a _ (Pcons a X px)) = Pcons a X px) *)
(* (Pcomm : forall (a b : A) (X : FSet A) (px : P X), *)
(* transport P (comm' a b X) (Pcons a _ (Pcons b X px)) = Pcons b _ (Pcons a X px)) : *)
(* forall a X, FSet_cons_ind P Pset Pempt Pcons Pdupl Pcomm ({|a|} X) = Pcons a X (FSet_cons_ind P Pset Pempt Pcons Pdupl Pcomm X). *)
(* Proof. *)
(* Theorem FSet_cons_ind_beta_dupl (P : FSet A -> Type) *)
(* (Pset : forall (X : FSet A), IsHSet (P X)) *)
(* (Pempt : P ∅) *)
(* (Pcons : forall (a : A) (X : FSet A), P X -> P ({|a|} X)) *)
(* (Pdupl : forall (a : A) (X : FSet A) (px : P X), *)
(* transport P (dupl' a X) (Pcons a _ (Pcons a X px)) = Pcons a X px) *)
(* (Pcomm : forall (a b : A) (X : FSet A) (px : P X), *)
(* transport P (comm' a b X) (Pcons a _ (Pcons b X px)) = Pcons b _ (Pcons a X px)) : *)
(* forall a X, apD (FSet_cons_ind P Pset Pempt Pcons Pdupl Pcomm) (dupl' a X) = Pdupl a X (FSet_cons_ind P Pset Pempt Pcons Pdupl Pcomm X). *)
End Iso.

View File

@ -251,35 +251,26 @@ Section fset_dec_enumerated.
Variable A : Type.
Context `{Univalence}.
Definition Kf_fsetc :
Kf A -> exists (X : FSetC A), forall (a : A), k_finite.map (FSetC_to_FSet X) a.
Definition merely_enumeration_FSet :
forall (X : FSet A),
hexists (fun (ls : list A) => forall a, a X = listExt ls a).
Proof.
intros [X HX].
exists (FSet_to_FSetC X).
rewrite repr_iso_id_l.
by rewrite <- HX.
Defined.
Definition merely_enumeration_FSetC :
forall (X : FSetC A),
hexists (fun (ls : list A) => forall a, a (FSetC_to_FSet X) = listExt ls a).
Proof.
hinduction.
simple refine (FSet_cons_ind _ _ _ _ _ _); simpl.
- apply tr. exists nil. simpl. done.
- intros a X Hls.
strip_truncations. apply tr.
destruct Hls as [ls Hls].
exists (cons a ls). intros b. cbn.
f_ap.
apply (ap (fun z => _ z) (Hls b)).
- intros. apply path_ishprop.
- intros. apply path_ishprop.
Defined.
Definition Kf_enumerated : Kf A -> enumerated A.
Proof.
intros HKf. apply Kf_fsetc in HKf.
intros HKf. apply Kf_unfold in HKf.
destruct HKf as [X HX].
pose (ls' := (merely_enumeration_FSetC X)).
pose (ls' := (merely_enumeration_FSet X)).
simple refine (@Trunc_rec _ _ _ _ _ ls'). clear ls'.
intros [ls Hls].
apply tr. exists ls.