mirror of
https://github.com/nmvdw/HITs-Examples
synced 2025-11-03 15:13:51 +01:00
Correspondence between enumerated subobjects and k-finite subobjects
This commit is contained in:
@@ -54,10 +54,8 @@ Section Iso.
|
||||
- intros a x HR. rewrite HR. reflexivity.
|
||||
Defined.
|
||||
|
||||
|
||||
Theorem repr_iso: FSet A <~> FSetC A.
|
||||
Global Instance: IsEquiv FSet_to_FSetC.
|
||||
Proof.
|
||||
simple refine (@BuildEquiv (FSet A) (FSetC A) FSet_to_FSetC _ ).
|
||||
apply isequiv_biinv.
|
||||
unfold BiInv. split.
|
||||
exists FSetC_to_FSet.
|
||||
@@ -66,6 +64,17 @@ Section Iso.
|
||||
unfold Sect. apply repr_iso_id_r.
|
||||
Defined.
|
||||
|
||||
Global Instance: IsEquiv FSetC_to_FSet.
|
||||
Proof.
|
||||
change (IsEquiv (FSet_to_FSetC)^-1).
|
||||
apply isequiv_inverse.
|
||||
Defined.
|
||||
|
||||
Theorem repr_iso: FSet A <~> FSetC A.
|
||||
Proof.
|
||||
simple refine (@BuildEquiv (FSet A) (FSetC A) FSet_to_FSetC _ ).
|
||||
Defined.
|
||||
|
||||
Theorem fset_fsetc : FSet A = FSetC A.
|
||||
Proof.
|
||||
apply (equiv_path _ _)^-1.
|
||||
|
||||
Reference in New Issue
Block a user