mirror of
				https://github.com/nmvdw/HITs-Examples
				synced 2025-11-03 23:23:51 +01:00 
			
		
		
		
	Speed up the compilation of properties.v a little bit
This commit is contained in:
		@@ -20,8 +20,7 @@ try (intros ; apply set_path2) ; cbn.
 | 
				
			|||||||
  rewrite P.
 | 
					  rewrite P.
 | 
				
			||||||
  rewrite (comm y x).
 | 
					  rewrite (comm y x).
 | 
				
			||||||
  rewrite <- (assoc x y y).
 | 
					  rewrite <- (assoc x y y).
 | 
				
			||||||
  rewrite Q.
 | 
					  f_ap. 
 | 
				
			||||||
  reflexivity.
 | 
					 | 
				
			||||||
Defined.
 | 
					Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
@@ -177,22 +176,24 @@ Defined.
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
Theorem intersection_idem : forall (X : FSet A), intersection X X = X.
 | 
					Theorem intersection_idem : forall (X : FSet A), intersection X X = X.
 | 
				
			||||||
Proof.
 | 
					Proof.
 | 
				
			||||||
hinduction; try (intros; apply set_path2).
 | 
					hinduction; try (intros ; apply set_path2).
 | 
				
			||||||
- reflexivity.
 | 
					- reflexivity.
 | 
				
			||||||
- intro a.
 | 
					- intro a.
 | 
				
			||||||
  destruct (dec (a = a)).
 | 
					  destruct (dec (a = a)).
 | 
				
			||||||
  * reflexivity.
 | 
					  * reflexivity.
 | 
				
			||||||
  * contradiction (n idpath).
 | 
					  * contradiction (n idpath).
 | 
				
			||||||
- intros X Y IHX IHY.
 | 
					- intros X Y IHX IHY.
 | 
				
			||||||
 | 
					  f_ap;
 | 
				
			||||||
  unfold intersection in *.
 | 
					  unfold intersection in *.
 | 
				
			||||||
  rewrite comprehension_or.
 | 
					  + transitivity (U (comprehension (fun a => isIn a X) X) (comprehension (fun a => isIn a Y) X)).
 | 
				
			||||||
  rewrite comprehension_or.
 | 
					    apply comprehension_or.
 | 
				
			||||||
  rewrite IHX.
 | 
					    rewrite IHX.
 | 
				
			||||||
  rewrite IHY.
 | 
					    rewrite (comm X).    
 | 
				
			||||||
  rewrite comprehension_subset.
 | 
					    apply comprehension_subset.
 | 
				
			||||||
  rewrite (comm X).
 | 
					  + transitivity (U (comprehension (fun a => isIn a X) Y) (comprehension (fun a => isIn a Y) Y)).
 | 
				
			||||||
  rewrite comprehension_subset.
 | 
					    apply comprehension_or.
 | 
				
			||||||
  reflexivity.
 | 
					    rewrite IHY.
 | 
				
			||||||
 | 
					    apply comprehension_subset.
 | 
				
			||||||
Defined.
 | 
					Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
(** assorted lattice laws *)
 | 
					(** assorted lattice laws *)
 | 
				
			||||||
@@ -270,8 +271,6 @@ hinduction x; try (intros ; apply set_path2) ; cbn.
 | 
				
			|||||||
  reflexivity.
 | 
					  reflexivity.
 | 
				
			||||||
Defined.
 | 
					Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Theorem intersection_assoc (X Y Z: FSet A) :
 | 
					Theorem intersection_assoc (X Y Z: FSet A) :
 | 
				
			||||||
    intersection X (intersection Y Z) = intersection (intersection X Y) Z.
 | 
					    intersection X (intersection Y Z) = intersection (intersection X Y) Z.
 | 
				
			||||||
Proof.
 | 
					Proof.
 | 
				
			||||||
@@ -314,14 +313,12 @@ hinduction; try (intros ; apply set_path2).
 | 
				
			|||||||
  * reflexivity.
 | 
					  * reflexivity.
 | 
				
			||||||
  * contradiction (n idpath).
 | 
					  * contradiction (n idpath).
 | 
				
			||||||
- intros X1 X2 P Q.
 | 
					- intros X1 X2 P Q.
 | 
				
			||||||
  rewrite comprehension_or.
 | 
					  f_ap; (etransitivity; [ apply comprehension_or |]).
 | 
				
			||||||
  rewrite comprehension_or.
 | 
					  rewrite P. rewrite (comm X1).
 | 
				
			||||||
  rewrite P.
 | 
					  apply comprehension_subset.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  rewrite Q.
 | 
					  rewrite Q.
 | 
				
			||||||
  rewrite comprehension_subset.
 | 
					  apply comprehension_subset.
 | 
				
			||||||
  rewrite (comm X1).
 | 
					 | 
				
			||||||
  rewrite comprehension_subset.
 | 
					 | 
				
			||||||
  reflexivity.
 | 
					 | 
				
			||||||
Defined.
 | 
					Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
@@ -338,13 +335,16 @@ hinduction X1; try (intros ; apply set_path2) ; cbn.
 | 
				
			|||||||
  rewrite p.
 | 
					  rewrite p.
 | 
				
			||||||
  rewrite comprehension_subset.
 | 
					  rewrite comprehension_subset.
 | 
				
			||||||
  reflexivity.
 | 
					  reflexivity.
 | 
				
			||||||
- intros. unfold intersection. (* TODO isIn is simplified too much *)
 | 
					- intros.
 | 
				
			||||||
  rewrite comprehension_or.
 | 
					  assert (Y = intersection (U (L a) Y) Y) as HY.
 | 
				
			||||||
  rewrite comprehension_or.
 | 
					  { unfold intersection. symmetry.
 | 
				
			||||||
  (* rewrite intersection_La. *)
 | 
					    transitivity (U (comprehension (fun x => isIn x (L a)) Y) (comprehension (fun x => isIn x Y) Y)).
 | 
				
			||||||
 | 
					    apply comprehension_or.
 | 
				
			||||||
 | 
					    rewrite comprehension_all.
 | 
				
			||||||
 | 
					    apply comprehension_subset. }
 | 
				
			||||||
 | 
					  rewrite <- HY.
 | 
				
			||||||
  admit.
 | 
					  admit.
 | 
				
			||||||
- unfold intersection.
 | 
					- unfold intersection.
 | 
				
			||||||
  cbn.
 | 
					 | 
				
			||||||
  intros Z1 Z2 P Q.
 | 
					  intros Z1 Z2 P Q.
 | 
				
			||||||
  rewrite comprehension_or.
 | 
					  rewrite comprehension_or.
 | 
				
			||||||
  assert (U (U (comprehension (fun a : A => isIn a Z1) X2) 
 | 
					  assert (U (U (comprehension (fun a : A => isIn a Z1) X2) 
 | 
				
			||||||
@@ -358,12 +358,13 @@ hinduction X1; try (intros ; apply set_path2) ; cbn.
 | 
				
			|||||||
  rewrite <- assoc.
 | 
					  rewrite <- assoc.
 | 
				
			||||||
  rewrite (assoc (comprehension (fun a : A => isIn a Z2) X2)).
 | 
					  rewrite (assoc (comprehension (fun a : A => isIn a Z2) X2)).
 | 
				
			||||||
  rewrite Q.
 | 
					  rewrite Q.
 | 
				
			||||||
 | 
					  cbn.
 | 
				
			||||||
  rewrite 
 | 
					  rewrite 
 | 
				
			||||||
  (comm (U (comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) X2)
 | 
					  (comm (U (comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) X2)
 | 
				
			||||||
           (comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) Y)) Y).
 | 
					           (comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) Y)) Y).
 | 
				
			||||||
  rewrite assoc.
 | 
					  rewrite assoc.
 | 
				
			||||||
  rewrite P.
 | 
					  rewrite P.
 | 
				
			||||||
  rewrite <- assoc.
 | 
					  rewrite <- assoc. cbn.
 | 
				
			||||||
  rewrite (assoc (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)).
 | 
					  rewrite (assoc (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)).
 | 
				
			||||||
  rewrite (comm (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)).
 | 
					  rewrite (comm (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)).
 | 
				
			||||||
  rewrite <- assoc.
 | 
					  rewrite <- assoc.
 | 
				
			||||||
@@ -444,39 +445,32 @@ Proof.
 | 
				
			|||||||
hinduction X; try (intros; apply path_forall; intro; apply set_path2).
 | 
					hinduction X; try (intros; apply path_forall; intro; apply set_path2).
 | 
				
			||||||
- intros. apply nl.
 | 
					- intros. apply nl.
 | 
				
			||||||
- intros a. hinduction Y;
 | 
					- intros a. hinduction Y;
 | 
				
			||||||
	try (intros; apply path_forall; intro; apply set_path2).
 | 
					  try (intros; apply path_forall; intro; apply set_path2).
 | 
				
			||||||
	(*intros. apply equiv_hprop_allpath.*)
 | 
					  + intro. contradiction (false_ne_true).
 | 
				
			||||||
	+ intro. cbn.  contradiction (false_ne_true).
 | 
					  + intros. destruct (dec (a = a0)).
 | 
				
			||||||
	+ intros. destruct (dec (a = a0)).
 | 
					    rewrite p; apply idem.
 | 
				
			||||||
		rewrite p; apply idem.
 | 
					    contradiction (false_ne_true).
 | 
				
			||||||
		contradiction (false_ne_true).
 | 
					  + intros X1 X2 IH1 IH2.
 | 
				
			||||||
	+ intros X1 X2 IH1 IH2.
 | 
					    intro Ho.
 | 
				
			||||||
	intro Ho.
 | 
					    destruct (isIn a X1);
 | 
				
			||||||
	destruct (isIn a X1);
 | 
					      destruct (isIn a X2).
 | 
				
			||||||
	destruct (isIn a X2).
 | 
					    * specialize (IH1 idpath).
 | 
				
			||||||
	specialize (IH1 idpath).
 | 
					      rewrite assoc. f_ap. 
 | 
				
			||||||
	specialize (IH2 idpath).
 | 
					    * specialize (IH1 idpath).
 | 
				
			||||||
	rewrite assoc. rewrite IH1. reflexivity.
 | 
					      rewrite assoc. f_ap. 
 | 
				
			||||||
	specialize (IH1 idpath).
 | 
					    * specialize (IH2 idpath).
 | 
				
			||||||
	rewrite assoc. rewrite IH1. reflexivity.
 | 
					      rewrite (comm X1 X2).
 | 
				
			||||||
	specialize (IH2 idpath).
 | 
					      rewrite assoc. f_ap. 
 | 
				
			||||||
	rewrite assoc. rewrite (comm (L a)). rewrite <- assoc. rewrite IH2. 
 | 
					    * contradiction (false_ne_true). 
 | 
				
			||||||
	reflexivity.
 | 
					 | 
				
			||||||
	cbn in Ho. contradiction (false_ne_true). 
 | 
					 | 
				
			||||||
- intros X1 X2 IH1 IH2 G. 
 | 
					- intros X1 X2 IH1 IH2 G. 
 | 
				
			||||||
	destruct (subset X1 Y);
 | 
					  destruct (subset X1 Y);
 | 
				
			||||||
	destruct (subset X2 Y).
 | 
					    destruct (subset X2 Y).
 | 
				
			||||||
	specialize (IH1 idpath).
 | 
					  * specialize (IH1 idpath).    
 | 
				
			||||||
	specialize (IH2 idpath).
 | 
					    specialize (IH2 idpath).
 | 
				
			||||||
	rewrite <- assoc. rewrite IH2. rewrite IH1. reflexivity.
 | 
					    rewrite <- assoc. rewrite IH2. apply IH1. 
 | 
				
			||||||
	specialize (IH1 idpath).
 | 
					  * contradiction (false_ne_true).
 | 
				
			||||||
	apply IH2 in G.
 | 
					  * contradiction (false_ne_true).
 | 
				
			||||||
	rewrite <- assoc. rewrite G. rewrite IH1. reflexivity.
 | 
					  * contradiction (false_ne_true).
 | 
				
			||||||
	specialize (IH2 idpath).
 | 
					 | 
				
			||||||
	apply IH1 in G.
 | 
					 | 
				
			||||||
	rewrite <- assoc. rewrite IH2. rewrite G. reflexivity.
 | 
					 | 
				
			||||||
	specialize (IH1 G). specialize (IH2 G).
 | 
					 | 
				
			||||||
	rewrite <- assoc. rewrite IH2. rewrite IH1. reflexivity.
 | 
					 | 
				
			||||||
Defined.
 | 
					Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
End properties. 
 | 
					End properties. 
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user