FSet is a strong powerset monad

This commit is contained in:
Dan Frumin 2017-06-20 11:33:13 +02:00
parent 47a38b3568
commit a95ddea6ca
2 changed files with 68 additions and 0 deletions

View File

@ -8,3 +8,4 @@ empty_set.v
ordered.v ordered.v
cons_repr.v cons_repr.v
Lattice.v Lattice.v
monad.v

67
FiniteSets/monad.v Normal file
View File

@ -0,0 +1,67 @@
(* [FSet] is a (strong and stable) finite powerset monad *)
Require Import definition properties.
Require Import HoTT HitTactics.
Definition fmap {A B : Type} : (A -> B) -> FSet A -> FSet B.
Proof.
intro f.
hrecursion.
- exact .
- intro a. exact {| f a |}.
- exact U.
- apply assoc.
- apply comm.
- apply nl.
- apply nr.
- simpl. intro x. apply idem.
Defined.
Lemma fmap_1 {A : Type} `{Funext} : @fmap A A idmap = idmap.
Proof.
apply path_forall.
intro x. hinduction x; try (cbn; intros; f_ap);
try (intros; apply set_path2).
Defined.
Lemma fmap_compose {A B C : Type} `{Funext} (f : A -> B) (g : B -> C) :
fmap (g o f) = fmap g o fmap f.
Proof.
apply path_forall. intro x.
hrecursion x; try (cbn; intros; f_ap);
try (intros; apply set_path2).
Defined.
Definition join {A : Type} : FSet (FSet A) -> FSet A.
Proof.
hrecursion.
- exact .
- exact idmap.
- exact U.
- apply assoc.
- apply comm.
- apply nl.
- apply nr.
- simpl. apply union_idem.
Defined.
Lemma join_assoc {A : Type} (X : FSet (FSet (FSet A))) :
join (fmap join X) = join (join X).
Proof.
hrecursion X; try (cbn; intros; f_ap);
try (intros; apply set_path2).
Defined.
Lemma join_return_1 {A : Type} (X : FSet A) :
join ({| X |}) = X.
Proof. reflexivity. Defined.
Lemma join_return_fmap {A : Type} (X : FSet A) :
join ({| X |}) = join (fmap (fun x => {|x|}) X).
Proof.
hrecursion X; try (cbn; intros; f_ap);
try (intros; apply set_path2).
Defined.
Lemma join_fmap_return_1 {A : Type} (X : FSet A) :
join (fmap (fun x => {|x|}) X) = X.
Proof. refine ((join_return_fmap _)^ @ join_return_1 _). Defined.