mirror of https://github.com/nmvdw/HITs-Examples
HProp is a lattice
This commit is contained in:
parent
0de37d6cea
commit
b3b3e5b6c2
|
@ -1,5 +1,6 @@
|
|||
(* Logical disjunction in HoTT (see ch. 3 of the book) *)
|
||||
Require Import HoTT.
|
||||
Require Import lattice.
|
||||
|
||||
Definition lor (X Y : hProp) : hProp := BuildhProp (Trunc (-1) (sum X Y)).
|
||||
|
||||
|
@ -12,16 +13,9 @@ Section lor_props.
|
|||
Variable X Y Z : hProp.
|
||||
Context `{Univalence}.
|
||||
|
||||
Theorem lor_assoc : X ∨ Y ∨ Z = (X ∨ Y) ∨ Z.
|
||||
Lemma lor_assoc : (X ∨ Y) ∨ Z = X ∨ Y ∨ Z.
|
||||
Proof.
|
||||
apply path_iff_hprop ; cbn.
|
||||
* simple refine (Trunc_ind _ _).
|
||||
intros [x | yz] ; cbn.
|
||||
+ apply (tr (inl (tr (inl x)))).
|
||||
+ simple refine (Trunc_ind _ _ yz).
|
||||
intros [y | z].
|
||||
++ apply (tr (inl (tr (inr y)))).
|
||||
++ apply (tr (inr z)).
|
||||
* simple refine (Trunc_ind _ _).
|
||||
intros [xy | z] ; cbn.
|
||||
+ simple refine (Trunc_ind _ _ xy).
|
||||
|
@ -29,9 +23,16 @@ Section lor_props.
|
|||
++ apply (tr (inl x)).
|
||||
++ apply (tr (inr (tr (inl y)))).
|
||||
+ apply (tr (inr (tr (inr z)))).
|
||||
* simple refine (Trunc_ind _ _).
|
||||
intros [x | yz] ; cbn.
|
||||
+ apply (tr (inl (tr (inl x)))).
|
||||
+ simple refine (Trunc_ind _ _ yz).
|
||||
intros [y | z].
|
||||
++ apply (tr (inl (tr (inr y)))).
|
||||
++ apply (tr (inr z)).
|
||||
Defined.
|
||||
|
||||
Theorem lor_comm : X ∨ Y = Y ∨ X.
|
||||
Lemma lor_comm : X ∨ Y = Y ∨ X.
|
||||
Proof.
|
||||
apply path_iff_hprop ; cbn.
|
||||
* simple refine (Trunc_ind _ _).
|
||||
|
@ -44,7 +45,7 @@ Section lor_props.
|
|||
+ apply (tr (inl x)).
|
||||
Defined.
|
||||
|
||||
Theorem lor_nl : False_hp ∨ X = X.
|
||||
Lemma lor_nr : False_hp ∨ X = X.
|
||||
Proof.
|
||||
apply path_iff_hprop ; cbn.
|
||||
* simple refine (Trunc_ind _ _).
|
||||
|
@ -54,7 +55,7 @@ Section lor_props.
|
|||
* apply (fun x => tr (inr x)).
|
||||
Defined.
|
||||
|
||||
Theorem lor_nr : X ∨ False_hp = X.
|
||||
Lemma lor_nl : X ∨ False_hp = X.
|
||||
Proof.
|
||||
apply path_iff_hprop ; cbn.
|
||||
* simple refine (Trunc_ind _ _).
|
||||
|
@ -64,7 +65,7 @@ Section lor_props.
|
|||
* apply (fun x => tr (inl x)).
|
||||
Defined.
|
||||
|
||||
Theorem lor_idem : X ∨ X = X.
|
||||
Lemma lor_idem : X ∨ X = X.
|
||||
Proof.
|
||||
apply path_iff_hprop ; cbn.
|
||||
- simple refine (Trunc_ind _ _).
|
||||
|
@ -73,3 +74,117 @@ Section lor_props.
|
|||
Defined.
|
||||
|
||||
End lor_props.
|
||||
|
||||
Definition land (X Y : hProp) : hProp := BuildhProp (prod X Y).
|
||||
|
||||
Notation "A ∧ B" := (land A B) (at level 20, right associativity) : logic_scope.
|
||||
Arguments land _%L _%L.
|
||||
Open Scope logic_scope.
|
||||
|
||||
Section hPropLattice.
|
||||
Context `{Univalence}.
|
||||
|
||||
Instance lor_commutative : Commutative lor.
|
||||
Proof.
|
||||
unfold Commutative.
|
||||
intros.
|
||||
apply lor_comm.
|
||||
apply _.
|
||||
Defined.
|
||||
|
||||
Instance land_commutative : Commutative land.
|
||||
Proof.
|
||||
unfold Commutative, land.
|
||||
intros.
|
||||
apply path_hprop.
|
||||
apply equiv_prod_symm.
|
||||
Defined.
|
||||
|
||||
Instance lor_associative : Associative lor.
|
||||
Proof.
|
||||
unfold Associative.
|
||||
intros.
|
||||
apply lor_assoc.
|
||||
apply _.
|
||||
Defined.
|
||||
|
||||
Instance land_associative : Associative land.
|
||||
Proof.
|
||||
unfold Associative, land.
|
||||
intros.
|
||||
symmetry.
|
||||
apply path_hprop.
|
||||
apply equiv_prod_assoc.
|
||||
Defined.
|
||||
|
||||
Instance lor_idempotent : Idempotent lor.
|
||||
Proof.
|
||||
unfold Idempotent.
|
||||
intros.
|
||||
apply lor_idem.
|
||||
apply _.
|
||||
Defined.
|
||||
|
||||
Instance land_idempotent : Idempotent land.
|
||||
Proof.
|
||||
unfold Idempotent, land.
|
||||
intros.
|
||||
apply path_iff_hprop ; cbn.
|
||||
- intros [a b] ; apply a.
|
||||
- intros a ; apply (pair a a).
|
||||
Defined.
|
||||
|
||||
Instance lor_neutrall : NeutralL lor False_hp.
|
||||
Proof.
|
||||
unfold NeutralL.
|
||||
intros.
|
||||
apply lor_nl.
|
||||
apply _.
|
||||
Defined.
|
||||
|
||||
Instance lor_neutralr : NeutralR lor False_hp.
|
||||
Proof.
|
||||
unfold NeutralR.
|
||||
intros.
|
||||
apply lor_nr.
|
||||
apply _.
|
||||
Defined.
|
||||
|
||||
Instance bool_absorption_orb_andb : Absorption lor land.
|
||||
Proof.
|
||||
unfold Absorption.
|
||||
intros.
|
||||
apply path_iff_hprop ; cbn.
|
||||
- intros X ; strip_truncations.
|
||||
destruct X as [Xx | [Xy1 Xy2]] ; assumption.
|
||||
- intros X.
|
||||
apply (tr (inl X)).
|
||||
Defined.
|
||||
|
||||
Instance bool_absorption_andb_orb : Absorption land lor.
|
||||
Proof.
|
||||
unfold Absorption.
|
||||
intros.
|
||||
apply path_iff_hprop ; cbn.
|
||||
- intros [X Y] ; strip_truncations.
|
||||
assumption.
|
||||
- intros X.
|
||||
split.
|
||||
* assumption.
|
||||
* apply (tr (inl X)).
|
||||
Defined.
|
||||
|
||||
Global Instance lattice_bool : Lattice andb orb false :=
|
||||
{ commutative_min := _ ;
|
||||
commutative_max := _ ;
|
||||
associative_min := _ ;
|
||||
associative_max := _ ;
|
||||
idempotent_min := _ ;
|
||||
idempotent_max := _ ;
|
||||
neutralL_min := _ ;
|
||||
neutralR_min := _ ;
|
||||
absorption_min_max := _ ;
|
||||
absorption_max_min := _
|
||||
}.
|
||||
|
||||
End hPropLattice.
|
Loading…
Reference in New Issue