mirror of https://github.com/nmvdw/HITs-Examples
Added Agda code for some HITs
This commit is contained in:
parent
27d78e1e75
commit
b85976a96d
|
@ -0,0 +1,98 @@
|
||||||
|
{-# OPTIONS --without-K --rewriting #-}
|
||||||
|
|
||||||
|
open import HoTT
|
||||||
|
|
||||||
|
module CL where
|
||||||
|
|
||||||
|
private
|
||||||
|
data CL' : Set where
|
||||||
|
K' : CL'
|
||||||
|
S' : CL'
|
||||||
|
app' : CL' -> CL' -> CL'
|
||||||
|
|
||||||
|
CL : Set
|
||||||
|
CL = CL'
|
||||||
|
|
||||||
|
K : CL
|
||||||
|
K = K'
|
||||||
|
|
||||||
|
Sc : CL
|
||||||
|
Sc = S'
|
||||||
|
|
||||||
|
app : CL -> CL -> CL
|
||||||
|
app = app'
|
||||||
|
|
||||||
|
postulate
|
||||||
|
KConv : {x y : CL} -> app (app K x) y == x
|
||||||
|
SConv : {x y z : CL} -> app (app (app Sc x) y) z == app (app x z) (app y z)
|
||||||
|
|
||||||
|
CLind : (Y : CL -> Set)
|
||||||
|
(KY : Y K)
|
||||||
|
(SY : Y Sc)
|
||||||
|
(appY : (x y : CL) -> Y x -> Y y -> Y (app x y))
|
||||||
|
(KConvY : (x y : CL) (a : Y x) (b : Y y) -> PathOver Y KConv (appY (app K x) y (appY K x KY a) b) a)
|
||||||
|
(SConvY : (x y z : CL) (a : Y x) (b : Y y) (c : Y z) ->
|
||||||
|
PathOver Y SConv
|
||||||
|
(appY
|
||||||
|
(app (app Sc x) y)
|
||||||
|
z
|
||||||
|
(appY
|
||||||
|
(app Sc x)
|
||||||
|
y
|
||||||
|
(appY Sc x SY a)
|
||||||
|
b
|
||||||
|
)
|
||||||
|
c
|
||||||
|
)
|
||||||
|
(appY (app x z) (app y z) (appY x z a c) (appY y z b c))
|
||||||
|
)
|
||||||
|
(x : CL) -> Y x
|
||||||
|
CLind Y KY SY appY _ _ K' = KY
|
||||||
|
CLind Y KY SY appY _ _ S' = SY
|
||||||
|
CLind Y KY SY appY KConvY SConvY (app' x x₁) = appY x x₁ (CLind Y KY SY appY KConvY SConvY x) (CLind Y KY SY appY KConvY SConvY x₁)
|
||||||
|
|
||||||
|
postulate
|
||||||
|
CLind_βKConv : (Y : CL -> Set)
|
||||||
|
(KY : Y K)
|
||||||
|
(SY : Y Sc)
|
||||||
|
(appY : (x y : CL) -> Y x -> Y y -> Y (app x y))
|
||||||
|
(KConvY : (x y : CL) (a : Y x) (b : Y y) -> PathOver Y KConv (appY (app K x) y (appY K x KY a) b) a)
|
||||||
|
(SConvY : (x y z : CL) (a : Y x) (b : Y y) (c : Y z) ->
|
||||||
|
PathOver Y SConv
|
||||||
|
(appY
|
||||||
|
(app (app Sc x) y)
|
||||||
|
z
|
||||||
|
(appY
|
||||||
|
(app Sc x)
|
||||||
|
y
|
||||||
|
(appY Sc x SY a)
|
||||||
|
b
|
||||||
|
)
|
||||||
|
c
|
||||||
|
)
|
||||||
|
(appY (app x z) (app y z) (appY x z a c) (appY y z b c))
|
||||||
|
)
|
||||||
|
(x y : CL) ->
|
||||||
|
apd (CLind Y KY SY appY KConvY SConvY) KConv == KConvY x y (CLind Y KY SY appY KConvY SConvY x) (CLind Y KY SY appY KConvY SConvY y)
|
||||||
|
CLind_βSConv : (Y : CL -> Set)
|
||||||
|
(KY : Y K)
|
||||||
|
(SY : Y Sc)
|
||||||
|
(appY : (x y : CL) -> Y x -> Y y -> Y (app x y))
|
||||||
|
(KConvY : (x y : CL) (a : Y x) (b : Y y) -> PathOver Y KConv (appY (app K x) y (appY K x KY a) b) a)
|
||||||
|
(SConvY : (x y z : CL) (a : Y x) (b : Y y) (c : Y z) ->
|
||||||
|
PathOver Y SConv
|
||||||
|
(appY
|
||||||
|
(app (app Sc x) y)
|
||||||
|
z
|
||||||
|
(appY
|
||||||
|
(app Sc x)
|
||||||
|
y
|
||||||
|
(appY Sc x SY a)
|
||||||
|
b
|
||||||
|
)
|
||||||
|
c
|
||||||
|
)
|
||||||
|
(appY (app x z) (app y z) (appY x z a c) (appY y z b c))
|
||||||
|
)
|
||||||
|
(x y z : CL) ->
|
||||||
|
apd (CLind Y KY SY appY KConvY SConvY) SConv == SConvY x y z (CLind Y KY SY appY KConvY SConvY x) (CLind Y KY SY appY KConvY SConvY y) (CLind Y KY SY appY KConvY SConvY z)
|
|
@ -0,0 +1,122 @@
|
||||||
|
{-# OPTIONS --without-K --rewriting #-}
|
||||||
|
|
||||||
|
open import HoTT
|
||||||
|
open import CL
|
||||||
|
|
||||||
|
module Thms where
|
||||||
|
|
||||||
|
trans-cst : (A : Set) {x y : A} (B : Set) (p : x == y) (z : B) -> transport (\x -> B) p z == z
|
||||||
|
trans-cst A B idp z = idp
|
||||||
|
|
||||||
|
I : CL
|
||||||
|
I = app (app Sc K) K
|
||||||
|
|
||||||
|
IConv : {x : CL} -> app I x == x
|
||||||
|
IConv {x} = SConv ∙ KConv
|
||||||
|
|
||||||
|
B : CL
|
||||||
|
B = app (app Sc (app K Sc)) K
|
||||||
|
|
||||||
|
BConv : {x y z : CL} -> app (app (app B x) y) z == app x (app y z)
|
||||||
|
BConv {x} {y} {z} =
|
||||||
|
ap (λ p -> app (app p y) z) SConv
|
||||||
|
∙ ap (λ p -> app (app (app (p) (app K x)) y) z) KConv
|
||||||
|
∙ SConv
|
||||||
|
∙ ap (λ p -> app p (app y z)) KConv
|
||||||
|
|
||||||
|
M : CL
|
||||||
|
M = app (app Sc I) I
|
||||||
|
|
||||||
|
MConv : {x : CL} -> app M x == app x x
|
||||||
|
MConv {x} =
|
||||||
|
SConv
|
||||||
|
∙ ap (λ p -> app p (app I x)) IConv
|
||||||
|
∙ ap (app x) IConv
|
||||||
|
|
||||||
|
T : CL
|
||||||
|
T = app (app B (app Sc I)) K
|
||||||
|
|
||||||
|
TConv : {x y : CL} -> app (app T x) y == app y x
|
||||||
|
TConv {x} {y} =
|
||||||
|
ap (λ p -> app p y) BConv
|
||||||
|
∙ SConv
|
||||||
|
∙ ap (λ p -> app p (app (app K x) y)) IConv
|
||||||
|
∙ ap (app y) KConv
|
||||||
|
|
||||||
|
C : CL
|
||||||
|
C =
|
||||||
|
app
|
||||||
|
(app
|
||||||
|
B
|
||||||
|
(app
|
||||||
|
T
|
||||||
|
(app
|
||||||
|
(app
|
||||||
|
B
|
||||||
|
B
|
||||||
|
)
|
||||||
|
T
|
||||||
|
)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
(app
|
||||||
|
(app
|
||||||
|
B
|
||||||
|
B
|
||||||
|
)
|
||||||
|
T
|
||||||
|
)
|
||||||
|
|
||||||
|
CConv : {x y z : CL} -> app (app (app C x) y) z == app (app x z) y
|
||||||
|
CConv {x} {y} {z} =
|
||||||
|
ap (λ p -> app (app p y) z) BConv
|
||||||
|
∙ ap (λ p -> app (app p y) z) TConv
|
||||||
|
∙ ap (λ p -> app (app (app p (app (app B B) T)) y) z) BConv
|
||||||
|
∙ ap (λ p -> app p z) BConv
|
||||||
|
∙ ap (λ p -> app p z) TConv
|
||||||
|
∙ ap (λ p -> app (app p x) z) BConv
|
||||||
|
∙ BConv
|
||||||
|
∙ TConv
|
||||||
|
|
||||||
|
W : CL
|
||||||
|
W = app (app C Sc) I
|
||||||
|
|
||||||
|
WConv : {x y : CL} -> app (app W x) y == app (app x y) y
|
||||||
|
WConv {x} {y} =
|
||||||
|
ap (λ p -> app p y) CConv
|
||||||
|
∙ SConv
|
||||||
|
∙ ap (app (app x y)) IConv
|
||||||
|
|
||||||
|
B' : CL
|
||||||
|
B' = app C B
|
||||||
|
|
||||||
|
B'Conv : {x y z : CL} -> app (app (app B' x) y) z == app y (app x z)
|
||||||
|
B'Conv {x} {y} {z} =
|
||||||
|
ap (λ p -> app p z) CConv
|
||||||
|
∙ BConv
|
||||||
|
|
||||||
|
V : CL
|
||||||
|
V = app (app B C) T
|
||||||
|
|
||||||
|
VConv : {x y z : CL} -> app (app (app V x) y) z == app (app z x) y
|
||||||
|
VConv {x} {y} {z} =
|
||||||
|
ap (λ p -> app (app p y) z) BConv
|
||||||
|
∙ CConv
|
||||||
|
∙ ap (λ p -> app p y) TConv
|
||||||
|
|
||||||
|
Y : CL
|
||||||
|
Y = app (app B' (app B' M)) M
|
||||||
|
|
||||||
|
YConv : {x : CL} -> app Y x == app x (app Y x)
|
||||||
|
YConv {x} =
|
||||||
|
B'Conv
|
||||||
|
∙ MConv
|
||||||
|
∙ B'Conv
|
||||||
|
∙ ap (app x) (! B'Conv)
|
||||||
|
|
||||||
|
fixpoint : (x : CL) -> Σ CL (λ y -> app x y == y)
|
||||||
|
fixpoint x = app Y x , ! YConv
|
||||||
|
|
||||||
|
S' : CL
|
||||||
|
S' = app C Sc
|
||||||
|
|
|
@ -0,0 +1,59 @@
|
||||||
|
{-# OPTIONS --without-K --rewriting #-}
|
||||||
|
|
||||||
|
open import HoTT
|
||||||
|
|
||||||
|
module Expressions where
|
||||||
|
|
||||||
|
private
|
||||||
|
data Exp' : Set where
|
||||||
|
value : Nat -> Exp'
|
||||||
|
addition : Exp' -> Exp' -> Exp'
|
||||||
|
|
||||||
|
Exp : Set
|
||||||
|
Exp = Exp'
|
||||||
|
|
||||||
|
val : Nat -> Exp
|
||||||
|
val = value
|
||||||
|
|
||||||
|
plus : Exp -> Exp -> Exp
|
||||||
|
plus = addition
|
||||||
|
|
||||||
|
postulate
|
||||||
|
add : (n m : Nat) -> plus (val n) (val m) == val (n + m)
|
||||||
|
trunc : is-set Exp
|
||||||
|
|
||||||
|
Exp-ind : (C : Exp -> Set)
|
||||||
|
-> (vC : (n : Nat) -> C (val n))
|
||||||
|
-> (pC : (e₁ e₂ : Exp) -> C e₁ -> C e₂ -> C(plus e₁ e₂))
|
||||||
|
-> (addC : (n m : Nat) -> PathOver C (add n m) (pC (val n) (val m) (vC n) (vC m)) (vC (n + m)))
|
||||||
|
-> (t : (e : Exp) -> is-set (C e))
|
||||||
|
-> (x : Exp) -> C x
|
||||||
|
Exp-ind C vC pC addC t (value n) = vC n
|
||||||
|
Exp-ind C vC pC addC t (addition e₁ e₂) = pC e₁ e₂ (Exp-ind C vC pC addC t e₁) (Exp-ind C vC pC addC t e₂)
|
||||||
|
|
||||||
|
postulate
|
||||||
|
Exp-ind-βadd : (C : Exp -> Set)
|
||||||
|
-> (vC : (n : Nat) -> C (val n))
|
||||||
|
-> (pC : (e₁ e₂ : Exp) -> C e₁ -> C e₂ -> C(plus e₁ e₂))
|
||||||
|
-> (addC : (n m : Nat) -> PathOver C (add n m) (pC (val n) (val m) (vC n) (vC m)) (vC (n + m)))
|
||||||
|
-> (t : (e : Exp) -> is-set (C e))
|
||||||
|
-> (n m : Nat)
|
||||||
|
-> apd (Exp-ind C vC pC addC t) (add n m) == addC n m
|
||||||
|
|
||||||
|
Exp-rec : {C : Set}
|
||||||
|
-> (vC : Nat -> C)
|
||||||
|
-> (pC : C -> C -> C)
|
||||||
|
-> (addC : (n m : Nat) -> pC (vC n) (vC m) == vC (n + m))
|
||||||
|
-> (t : is-set C)
|
||||||
|
-> Exp -> C
|
||||||
|
Exp-rec vC pC addC t (value n) = vC n
|
||||||
|
Exp-rec vC pC addC t (addition e₁ e₂) = pC (Exp-rec vC pC addC t e₁) (Exp-rec vC pC addC t e₂)
|
||||||
|
|
||||||
|
postulate
|
||||||
|
Exp-rec-βadd : {C : Set}
|
||||||
|
-> (vC : Nat -> C)
|
||||||
|
-> (pC : C -> C -> C)
|
||||||
|
-> (addC : (n m : Nat) -> pC (vC n) (vC m) == vC (n + m))
|
||||||
|
-> (t : is-set C)
|
||||||
|
-> (n m : Nat)
|
||||||
|
-> ap (Exp-rec vC pC addC t) (add n m) == addC n m
|
|
@ -0,0 +1,16 @@
|
||||||
|
{-# OPTIONS --without-K --rewriting #-}
|
||||||
|
|
||||||
|
open import HoTT
|
||||||
|
open import Expressions
|
||||||
|
|
||||||
|
module Thms where
|
||||||
|
|
||||||
|
value : (e : Exp) -> Σ Nat (\n -> e == val n)
|
||||||
|
value = Exp-ind
|
||||||
|
(\e -> Σ Nat (\n -> e == val n))
|
||||||
|
(\n -> n , idp)
|
||||||
|
(\e₁ e₂ v₁ v₂ -> fst v₁ + fst v₂ ,
|
||||||
|
(ap (\e -> plus e e₂) (snd v₁) ∙ ap (plus (val (fst v₁))) (snd v₂)) ∙ add (fst v₁) (fst v₂)
|
||||||
|
)
|
||||||
|
(\n m -> from-transp! (\e -> Σ Nat (\n -> e == val n)) (add n m) (pair= {!!} {!!}))
|
||||||
|
(\e -> {!!})
|
|
@ -0,0 +1,32 @@
|
||||||
|
{-# OPTIONS --without-K --rewriting #-}
|
||||||
|
|
||||||
|
open import HoTT
|
||||||
|
open import Syntax
|
||||||
|
|
||||||
|
module Language where
|
||||||
|
|
||||||
|
data Program : Set where
|
||||||
|
fail : Program
|
||||||
|
exec : Syntax -> State -> Program
|
||||||
|
|
||||||
|
postulate
|
||||||
|
assignp : (z : State) (x n : Nat) -> exec (x := n) z == exec skip ( z [ x :== n ])
|
||||||
|
comp₁ : (z : State) (S : Syntax) -> exec (conc skip S) z == exec S z
|
||||||
|
comp₂ : (z z' : State) (S₁ S₂ S₁' : Syntax) -> exec S₁ z == exec S₁' z' -> exec (conc S₁ S₂) z == exec (conc S₁' S₂) z'
|
||||||
|
while₁ : (z : State) (x n : Nat) (S : Syntax) -> defined z x -> equals z x n -> exec (while x == n do S) z == exec (conc S (while x == n do S)) z
|
||||||
|
while₂ : (z : State) (x n : Nat) (S : Syntax) -> defined z x -> unequals z x n -> exec (while x == n do S) z == exec skip z
|
||||||
|
while₃ : (z : State) (x n : Nat) (S : Syntax) -> undefined z x -> exec (while x == n do S) z == fail
|
||||||
|
|
||||||
|
Program-elim :
|
||||||
|
(Y : Set)
|
||||||
|
-> (failY : Y)
|
||||||
|
-> (execY : Syntax -> State -> Y)
|
||||||
|
-> (assignY : (z : State) (x n : Nat) -> execY (x := n) z == execY skip ( z [ x :== n ]) )
|
||||||
|
-> (compY₁ : (z : State) (S : Syntax) -> execY (conc skip S) z == execY S z )
|
||||||
|
-> (compY₂ : (z z' : State) (S₁ S₂ S₁' : Syntax) -> execY S₁ z == execY S₁' z' -> execY (conc S₁ S₂) z == execY (conc S₁' S₂) z')
|
||||||
|
-> (whileY₁ : (z : State) (x n : Nat) (S : Syntax) -> defined z x -> equals z x n -> execY (while x == n do S) z == execY (conc S (while x == n do S)) z)
|
||||||
|
-> (whileY₂ : (z : State) (x n : Nat) (S : Syntax) -> defined z x -> unequals z x n -> execY (while x == n do S) z == execY skip z)
|
||||||
|
-> (whileY₃ : (z : State) (x n : Nat) (S : Syntax) -> undefined z x -> execY (while x == n do S) z == failY)
|
||||||
|
-> Program -> Y
|
||||||
|
Program-elim _ failY _ _ _ _ _ _ _ fail = failY
|
||||||
|
Program-elim _ _ execY _ _ _ _ _ _ (exec s z) = execY s z
|
|
@ -0,0 +1,18 @@
|
||||||
|
{-# OPTIONS --without-K --rewriting #-}
|
||||||
|
|
||||||
|
open import HoTT
|
||||||
|
|
||||||
|
module Semantics where
|
||||||
|
|
||||||
|
data koe : Set where
|
||||||
|
a : koe
|
||||||
|
b : koe
|
||||||
|
|
||||||
|
postulate
|
||||||
|
kek : a ↦ b
|
||||||
|
{-# REWRITE kek #-}
|
||||||
|
|
||||||
|
|
||||||
|
Y : koe -> Set
|
||||||
|
Y a = Nat
|
||||||
|
Y b = Bool
|
|
@ -0,0 +1,66 @@
|
||||||
|
{-# OPTIONS --without-K --rewriting #-}
|
||||||
|
|
||||||
|
open import HoTT
|
||||||
|
|
||||||
|
module Syntax where
|
||||||
|
|
||||||
|
data Maybe (A : Set) : Set where
|
||||||
|
Just : A -> Maybe A
|
||||||
|
Nothing : Maybe A
|
||||||
|
|
||||||
|
eqN : Nat -> Nat -> Bool
|
||||||
|
eqN 0 0 = true
|
||||||
|
eqN 0 _ = false
|
||||||
|
eqN (S _) 0 = false
|
||||||
|
eqN (S n) (S m) = eqN n m
|
||||||
|
|
||||||
|
-- first coordinate represents the variable x_i, second the value
|
||||||
|
State : Set
|
||||||
|
State = List (Nat × Nat)
|
||||||
|
|
||||||
|
_[_:==_] : State -> Nat -> Nat -> State
|
||||||
|
nil [ x :== n ] = (x , n) :: nil
|
||||||
|
((y , m) :: s) [ x :== n ] =
|
||||||
|
if eqN x y
|
||||||
|
then (x , n) :: s
|
||||||
|
else ((y , m) :: (s [ x :== n ]))
|
||||||
|
|
||||||
|
equals : State -> Nat -> Nat -> Set
|
||||||
|
equals nil _ _ = Empty
|
||||||
|
equals ((x , n) :: s) y m =
|
||||||
|
if eqN x y
|
||||||
|
then
|
||||||
|
if eqN n m
|
||||||
|
then Unit
|
||||||
|
else Empty
|
||||||
|
else equals s y m
|
||||||
|
|
||||||
|
unequals : State -> Nat -> Nat -> Set
|
||||||
|
unequals nil _ _ = Unit
|
||||||
|
unequals ((x , n) :: s) y m =
|
||||||
|
if eqN x y
|
||||||
|
then
|
||||||
|
if eqN n m
|
||||||
|
then Empty
|
||||||
|
else Unit
|
||||||
|
else unequals s y m
|
||||||
|
|
||||||
|
defined : State -> Nat -> Set
|
||||||
|
defined nil y = Empty
|
||||||
|
defined ((x , n) :: s) y =
|
||||||
|
if eqN x y
|
||||||
|
then Unit
|
||||||
|
else defined s y
|
||||||
|
|
||||||
|
undefined : State -> Nat -> Set
|
||||||
|
undefined nil y = Unit
|
||||||
|
undefined ((x , n) :: s) y =
|
||||||
|
if eqN x y
|
||||||
|
then Empty
|
||||||
|
else undefined s y
|
||||||
|
|
||||||
|
data Syntax : Set where
|
||||||
|
skip : Syntax
|
||||||
|
_:=_ : Nat -> Nat -> Syntax
|
||||||
|
conc : Syntax -> Syntax -> Syntax
|
||||||
|
while_==_do_ : Nat -> Nat -> Syntax -> Syntax
|
|
@ -0,0 +1,63 @@
|
||||||
|
{-# OPTIONS --without-K --rewriting #-}
|
||||||
|
|
||||||
|
open import HoTT
|
||||||
|
|
||||||
|
module Integers where
|
||||||
|
|
||||||
|
private
|
||||||
|
data Integers : Set where
|
||||||
|
z : Integers
|
||||||
|
S : Integers -> Integers
|
||||||
|
P : Integers -> Integers
|
||||||
|
|
||||||
|
Ints : Set
|
||||||
|
Ints = Integers
|
||||||
|
|
||||||
|
nul : Ints
|
||||||
|
nul = z
|
||||||
|
|
||||||
|
Succ : Ints -> Ints
|
||||||
|
Succ = S
|
||||||
|
|
||||||
|
Pred : Ints -> Ints
|
||||||
|
Pred = P
|
||||||
|
|
||||||
|
postulate
|
||||||
|
invl : (x : Integers) -> P(S x) == x
|
||||||
|
invr : (x : Integers) -> S(P x) == x
|
||||||
|
trunc : is-set Ints
|
||||||
|
|
||||||
|
Zind : (Y : Integers -> Set)
|
||||||
|
-> (zY : Y z)
|
||||||
|
-> (SY : (x : Integers) -> Y x -> Y(S x))
|
||||||
|
-> (PY : (x : Integers) -> Y x -> Y(P x))
|
||||||
|
-> (invYl : (x : Integers) (y : Y x) -> PathOver Y (invl x) (PY (S x) (SY x y)) y)
|
||||||
|
-> (invYr : (x : Integers) (y : Y x) -> PathOver Y (invr x) (SY (P x) (PY x y)) y)
|
||||||
|
-> (t : (x : Integers) -> is-set (Y x))
|
||||||
|
-> (x : Integers) -> Y x
|
||||||
|
Zind Y zY SY PY invYl invYr t z = zY
|
||||||
|
Zind Y zY SY PY invYl invYr t (S x) = SY x (Zind Y zY SY PY invYl invYr t x)
|
||||||
|
Zind Y zY SY PY invYl invYr t (P x) = PY x (Zind Y zY SY PY invYl invYr t x)
|
||||||
|
|
||||||
|
postulate
|
||||||
|
Zind-βinvl :
|
||||||
|
(Y : Integers -> Set)
|
||||||
|
-> (zY : Y z)
|
||||||
|
-> (SY : (x : Integers) -> Y x -> Y(S x))
|
||||||
|
-> (PY : (x : Integers) -> Y x -> Y(P x))
|
||||||
|
-> (invYl : (x : Integers) (y : Y x) -> PathOver Y (invl x) (PY (S x) (SY x y)) y)
|
||||||
|
-> (invYr : (x : Integers) (y : Y x) -> PathOver Y (invr x) (SY (P x) (PY x y)) y)
|
||||||
|
-> (t : (x : Integers) -> is-set (Y x))
|
||||||
|
-> (x : Integers)
|
||||||
|
-> apd (Zind Y zY SY PY invYl invYr t) (invl x) == invYl x (Zind Y zY SY PY invYl invYr t x)
|
||||||
|
|
||||||
|
Zind-βinvr :
|
||||||
|
(Y : Integers -> Set)
|
||||||
|
-> (zY : Y z)
|
||||||
|
-> (SY : (x : Integers) -> Y x -> Y(S x))
|
||||||
|
-> (PY : (x : Integers) -> Y x -> Y(P x))
|
||||||
|
-> (invYl : (x : Integers) (y : Y x) -> PathOver Y (invl x) (PY (S x) (SY x y)) y)
|
||||||
|
-> (invYr : (x : Integers) (y : Y x) -> PathOver Y (invr x) (SY (P x) (PY x y)) y)
|
||||||
|
-> (t : (x : Integers) -> is-set (Y x))
|
||||||
|
-> (x : Integers)
|
||||||
|
-> apd (Zind Y zY SY PY invYl invYr t) (invr x) == invYr x (Zind Y zY SY PY invYl invYr t x)
|
|
@ -0,0 +1,205 @@
|
||||||
|
{-# OPTIONS --without-K --rewriting #-}
|
||||||
|
|
||||||
|
open import HoTT
|
||||||
|
open import Integers
|
||||||
|
|
||||||
|
module Thms where
|
||||||
|
|
||||||
|
paths_set : (A B : Set) (m : is-set B) (f g : A -> B) (a : A) -> is-set (f a == g a)
|
||||||
|
paths_set A B m f g a = \c₁ c₂ q₁ q₂ ->
|
||||||
|
prop-has-level-S
|
||||||
|
(contr-is-prop (m (f a) (g a) c₁ c₂))
|
||||||
|
q₁
|
||||||
|
q₂
|
||||||
|
|
||||||
|
trunc_paths : (A : Set) (Y : A -> Set) {x y : A} (p : x == y) (t : is-prop (Y x)) (c₁ : Y x) (c₂ : Y y) -> PathOver Y p c₁ c₂
|
||||||
|
trunc_paths A Y p t c₁ c₂ = from-transp! Y p ((prop-has-all-paths t) c₁ (transport! Y p c₂))
|
||||||
|
|
||||||
|
trans-cst : (A : Set) {x y : A} (B : Set) (p : x == y) (z : B) -> transport (\x -> B) p z == z
|
||||||
|
trans-cst A B idp z = idp
|
||||||
|
|
||||||
|
plus : Ints -> Ints -> Ints
|
||||||
|
plus n = Zind
|
||||||
|
(\m -> Ints)
|
||||||
|
n
|
||||||
|
(\m -> Succ)
|
||||||
|
(\m -> Pred)
|
||||||
|
(\x y -> from-transp (λ _ → Ints) (invl x) (trans-cst Ints Ints (invl x) (Pred (Succ y)) ∙ invl y))
|
||||||
|
(\x y -> from-transp (λ _ → Ints) (invr x) (trans-cst Ints Ints (invr x) (Succ (Pred y)) ∙ invr y))
|
||||||
|
(\x -> trunc)
|
||||||
|
|
||||||
|
negate : Ints -> Ints
|
||||||
|
negate = Zind
|
||||||
|
(λ _ → Ints)
|
||||||
|
nul
|
||||||
|
(λ _ -> Pred)
|
||||||
|
(λ _ -> Succ)
|
||||||
|
(λ x y -> from-transp (λ _ -> Ints) (invl x) (trans-cst Ints Ints (invl x) (Succ (Pred y)) ∙ invr y))
|
||||||
|
(λ x y -> from-transp (λ _ -> Ints) (invr x) (trans-cst Ints Ints (invr x) (Pred (Succ y)) ∙ invl y))
|
||||||
|
(\x -> trunc)
|
||||||
|
|
||||||
|
min : Ints -> Ints -> Ints
|
||||||
|
min x y = plus x (negate y)
|
||||||
|
|
||||||
|
plus_0n : (x : Ints) -> plus x nul == x
|
||||||
|
plus_0n x = idp
|
||||||
|
|
||||||
|
plus_n0 : (x : Ints) -> plus nul x == x
|
||||||
|
plus_n0 = Zind
|
||||||
|
(\x -> plus nul x == x)
|
||||||
|
idp
|
||||||
|
(\x p -> ap Succ p)
|
||||||
|
(\x p -> ap Pred p)
|
||||||
|
(\x y ->
|
||||||
|
trunc_paths
|
||||||
|
Ints
|
||||||
|
(\m -> plus nul m == m)
|
||||||
|
(invl x)
|
||||||
|
(trunc (plus nul (Pred (Succ x)))
|
||||||
|
(Pred(Succ x)))
|
||||||
|
(ap Pred (ap Succ y))
|
||||||
|
y
|
||||||
|
)
|
||||||
|
(\x y ->
|
||||||
|
trunc_paths
|
||||||
|
Ints
|
||||||
|
(\m -> plus nul m == m)
|
||||||
|
(invr x)
|
||||||
|
(trunc (plus nul (Succ (Pred x)))
|
||||||
|
(Succ(Pred x)))
|
||||||
|
(ap Succ (ap Pred y))
|
||||||
|
y
|
||||||
|
)
|
||||||
|
(\x -> paths_set Ints Ints trunc (\m -> plus nul m) (\m -> m) x)
|
||||||
|
|
||||||
|
plus_assoc : (x y z : Ints) -> plus x (plus y z) == plus (plus x y) z
|
||||||
|
plus_assoc x = Zind
|
||||||
|
(λ y -> (z : Ints) -> plus x (plus y z) == plus (plus x y) z)
|
||||||
|
(
|
||||||
|
Zind
|
||||||
|
(λ z -> plus x (plus nul z) == plus (plus x nul) z)
|
||||||
|
idp
|
||||||
|
(λ x p -> ap Succ p)
|
||||||
|
(λ x p -> ap Pred p)
|
||||||
|
{!!}
|
||||||
|
{!!}
|
||||||
|
{!!}
|
||||||
|
)
|
||||||
|
(λ y p ->
|
||||||
|
Zind
|
||||||
|
(λ z -> plus x (plus (Succ y) z) == plus (plus x (Succ y)) z)
|
||||||
|
(p (Succ nul))
|
||||||
|
(λ y' p' -> ap Succ p')
|
||||||
|
(λ y' p' -> ap Pred p')
|
||||||
|
{!!}
|
||||||
|
{!!}
|
||||||
|
{!!}
|
||||||
|
)
|
||||||
|
(λ y p ->
|
||||||
|
Zind
|
||||||
|
(λ z -> plus x (plus (Pred y) z) == plus (plus x (Pred y)) z)
|
||||||
|
(p (Pred nul))
|
||||||
|
(λ y' p' -> ap Succ p')
|
||||||
|
(λ y' p' -> ap Pred p')
|
||||||
|
{!!}
|
||||||
|
{!!}
|
||||||
|
{!!}
|
||||||
|
)
|
||||||
|
{!!}
|
||||||
|
{!!}
|
||||||
|
{!!}
|
||||||
|
|
||||||
|
plus_Succ : (x y : Ints) -> plus x (Succ y) == Succ(plus x y)
|
||||||
|
plus_Succ x y = idp
|
||||||
|
|
||||||
|
Succ_plus : (x y : Ints) -> plus (Succ x) y == Succ(plus x y)
|
||||||
|
Succ_plus x = Zind
|
||||||
|
(λ y -> plus (Succ x) y == Succ(plus x y))
|
||||||
|
idp
|
||||||
|
(λ y' p -> ap Succ p)
|
||||||
|
(λ y' p -> ap Pred p ∙ invl (plus x y') ∙ ! (invr (plus x y')))
|
||||||
|
{!!}
|
||||||
|
{!!}
|
||||||
|
{!!}
|
||||||
|
|
||||||
|
plus_Pred : (x y : Ints) -> plus x (Pred y) == Pred(plus x y)
|
||||||
|
plus_Pred x y = idp
|
||||||
|
|
||||||
|
Pred_plus : (x y : Ints) -> plus (Pred x) y == Pred(plus x y)
|
||||||
|
Pred_plus x = Zind
|
||||||
|
(λ y -> plus (Pred x) y == Pred(plus x y))
|
||||||
|
idp
|
||||||
|
(λ y' p -> ap Succ p ∙ invr (plus x y') ∙ ! (invl (plus x y')))
|
||||||
|
(λ y' p -> ap Pred p)
|
||||||
|
{!!}
|
||||||
|
{!!}
|
||||||
|
{!!}
|
||||||
|
|
||||||
|
plus_negr : (y : Ints) -> plus y (negate y) == nul
|
||||||
|
plus_negr = Zind
|
||||||
|
(λ y -> plus y (negate y) == nul)
|
||||||
|
idp
|
||||||
|
(λ x p ->
|
||||||
|
Succ_plus x (negate (Succ x))
|
||||||
|
∙ invr (plus x (negate x))
|
||||||
|
∙ p
|
||||||
|
)
|
||||||
|
(λ x p ->
|
||||||
|
Pred_plus x (negate (Pred x))
|
||||||
|
∙ invl (plus x (negate x))
|
||||||
|
∙ p
|
||||||
|
)
|
||||||
|
{!!}
|
||||||
|
{!!}
|
||||||
|
{!!}
|
||||||
|
|
||||||
|
plus_negl : (y : Ints) -> plus (negate y) y == nul
|
||||||
|
plus_negl = Zind
|
||||||
|
(λ y -> plus (negate y) y == nul)
|
||||||
|
idp
|
||||||
|
(λ y' p ->
|
||||||
|
Pred_plus (negate y') (Succ y')
|
||||||
|
∙ invl (plus (negate y') y')
|
||||||
|
∙ p
|
||||||
|
)
|
||||||
|
(λ y' p ->
|
||||||
|
Succ_plus (negate y') (Pred y')
|
||||||
|
∙ invr (plus (negate y') y')
|
||||||
|
∙ p
|
||||||
|
)
|
||||||
|
{!!}
|
||||||
|
{!!}
|
||||||
|
{!!}
|
||||||
|
|
||||||
|
plus_com : (x y : Ints) -> plus x y == plus y x
|
||||||
|
plus_com x = Zind
|
||||||
|
(λ y -> plus x y == plus y x)
|
||||||
|
(plus_0n x ∙ ! (plus_n0 x))
|
||||||
|
(λ y' p ->
|
||||||
|
plus_Succ x y'
|
||||||
|
∙ ap Succ p
|
||||||
|
∙ ! (Succ_plus y' x))
|
||||||
|
(λ y' p ->
|
||||||
|
plus_Pred x y'
|
||||||
|
∙ ap Pred p
|
||||||
|
∙ ! (Pred_plus y' x)
|
||||||
|
)
|
||||||
|
{!!}
|
||||||
|
{!!}
|
||||||
|
{!!}
|
||||||
|
|
||||||
|
times : Ints -> Ints -> Ints
|
||||||
|
times n = Zind
|
||||||
|
(λ _ → Ints)
|
||||||
|
nul
|
||||||
|
(\x y -> plus y n)
|
||||||
|
(\x y -> min y n)
|
||||||
|
(λ x y -> from-transp (λ _ → Ints) (invl x) (trans-cst Ints Ints (invl x) (min (plus y n) n)
|
||||||
|
∙ ! (plus_assoc y n (negate n))
|
||||||
|
∙ ap (plus y) (plus_negr n)
|
||||||
|
∙ plus_0n y))
|
||||||
|
(λ x y -> from-transp (λ _ → Ints) (invr x) (trans-cst Ints Ints (invr x) (plus (min y n) n)
|
||||||
|
∙ ! (plus_assoc y (negate n) n)
|
||||||
|
∙ ap (λ z -> plus y z) (plus_negl n)
|
||||||
|
∙ plus_0n y))
|
||||||
|
(\x -> trunc)
|
|
@ -0,0 +1,49 @@
|
||||||
|
{-# OPTIONS --without-K --rewriting #-}
|
||||||
|
|
||||||
|
open import HoTT
|
||||||
|
|
||||||
|
module Interval where
|
||||||
|
|
||||||
|
postulate
|
||||||
|
I : Set
|
||||||
|
z : I
|
||||||
|
o : I
|
||||||
|
s : z == o
|
||||||
|
I-ind : (Y : I -> Set)
|
||||||
|
(zY : Y z)
|
||||||
|
(oY : Y o)
|
||||||
|
(sY : PathOver Y s zY oY)
|
||||||
|
(x : I)
|
||||||
|
-> Y x
|
||||||
|
I-ind-βz : (Y : I -> Set)
|
||||||
|
(zY : Y z)
|
||||||
|
(oY : Y o)
|
||||||
|
(sY : PathOver Y s zY oY)
|
||||||
|
-> I-ind Y zY oY sY z ↦ zY
|
||||||
|
{-# REWRITE I-ind-βz #-}
|
||||||
|
I-ind-βo : (Y : I -> Set)
|
||||||
|
(zY : Y z)
|
||||||
|
(oY : Y o)
|
||||||
|
(sY : PathOver Y s zY oY)
|
||||||
|
-> I-ind Y zY oY sY o ↦ oY
|
||||||
|
{-# REWRITE I-ind-βo #-}
|
||||||
|
I-ind-βs : (Y : I -> Set)
|
||||||
|
(zY : Y z)
|
||||||
|
(oY : Y o)
|
||||||
|
(sY : PathOver Y s zY oY)
|
||||||
|
-> apd (I-ind Y zY oY sY) s == sY
|
||||||
|
|
||||||
|
transp-cst : (A : Set) {x y : A} (B : Set) (p : x == y) (z : B) -> transport (\x -> B) p z == z
|
||||||
|
transp-cst A B idp z = idp
|
||||||
|
|
||||||
|
transp-fun : (A B : Set) (a b : A) (p : a == b) (f : A -> B) -> transport (λ _ -> A -> B) p f == transport (λ _ -> B) p (f a)
|
||||||
|
transp-fun = ?
|
||||||
|
|
||||||
|
fe : {A B : Set} (f g : A -> B) -> ( (x : A) -> f x == g x) -> f == g
|
||||||
|
fe {A} {B} f g p =
|
||||||
|
ap
|
||||||
|
(I-ind (λ _ → (x : A) → B) f g
|
||||||
|
(from-transp (λ _ → (x : A) → B) s (
|
||||||
|
{!!}
|
||||||
|
)))
|
||||||
|
s
|
|
@ -0,0 +1,59 @@
|
||||||
|
{-# OPTIONS --without-K --rewriting #-}
|
||||||
|
|
||||||
|
open import HoTT
|
||||||
|
|
||||||
|
module Mod2 where
|
||||||
|
|
||||||
|
private
|
||||||
|
data M' : Set where
|
||||||
|
Zero : M'
|
||||||
|
S : M' -> M'
|
||||||
|
|
||||||
|
M : Set
|
||||||
|
M = M'
|
||||||
|
|
||||||
|
z : M
|
||||||
|
z = Zero
|
||||||
|
|
||||||
|
Succ : M -> M
|
||||||
|
Succ = S
|
||||||
|
|
||||||
|
postulate
|
||||||
|
mod : (n : M) -> n == Succ(Succ n)
|
||||||
|
trunc : is-set M
|
||||||
|
|
||||||
|
M-ind : (C : M -> Set)
|
||||||
|
-> (a : C Zero)
|
||||||
|
-> (sC : (x : M) -> C x -> C (S x))
|
||||||
|
-> (p : (n : M) (c : C n) -> PathOver C (mod n) c (sC (Succ n) (sC n c)))
|
||||||
|
-> (t : (m : M) -> is-set (C m))
|
||||||
|
-> (x : M) -> C x
|
||||||
|
M-ind C a sC _ t Zero = a
|
||||||
|
M-ind C a sC p t (S x) = sC x (M-ind C a sC p t x)
|
||||||
|
|
||||||
|
postulate
|
||||||
|
M-ind-βmod : (C : M -> Set)
|
||||||
|
-> (a : C Zero)
|
||||||
|
-> (sC : (x : M) -> C x -> C (S x))
|
||||||
|
-> (p : (n : M) (c : C n) -> PathOver C (mod n) c (sC (Succ n) (sC n c)))
|
||||||
|
-> (t : (m : M) -> is-set (C m))
|
||||||
|
-> (n : M)
|
||||||
|
-> apd (M-ind C a sC p t) (mod n) == p n (M-ind C a sC p t n)
|
||||||
|
|
||||||
|
M-rec : {C : Set}
|
||||||
|
-> (a : C)
|
||||||
|
-> (sC : C -> C)
|
||||||
|
-> (p : (c : C) -> c == sC (sC c))
|
||||||
|
-> (t : is-set C)
|
||||||
|
-> M -> C
|
||||||
|
M-rec a sC _ _ Zero = a
|
||||||
|
M-rec a sC p t (S x) = sC (M-rec a sC p t x)
|
||||||
|
|
||||||
|
postulate
|
||||||
|
M-rec-βmod : {C : Set}
|
||||||
|
-> (a : C)
|
||||||
|
-> (sC : C -> C)
|
||||||
|
-> (p : (c : C) -> c == sC (sC c))
|
||||||
|
-> (t : is-set C)
|
||||||
|
-> (n : M)
|
||||||
|
-> ap (M-rec a sC p t) (mod n) == p (M-rec a sC p t n)
|
|
@ -0,0 +1,113 @@
|
||||||
|
{-# OPTIONS --without-K --rewriting #-}
|
||||||
|
|
||||||
|
open import HoTT
|
||||||
|
open import Mod2
|
||||||
|
|
||||||
|
module Thms where
|
||||||
|
|
||||||
|
paths_set : (A B : Set) (m : is-set B) (f g : A -> B) (a : A) -> is-set (f a == g a)
|
||||||
|
paths_set A B m f g a = \c₁ c₂ q₁ q₂ ->
|
||||||
|
prop-has-level-S
|
||||||
|
(contr-is-prop (m (f a) (g a) c₁ c₂))
|
||||||
|
q₁
|
||||||
|
q₂
|
||||||
|
|
||||||
|
trunc_paths : (A : Set) (Y : A -> Set) {x y : A} (p : x == y) (t : is-prop (Y x)) (c₁ : Y x) (c₂ : Y y) -> PathOver Y p c₁ c₂
|
||||||
|
trunc_paths A Y p t c₁ c₂ = from-transp! Y p ((prop-has-all-paths t) c₁ (transport! Y p c₂))
|
||||||
|
|
||||||
|
plus : M -> M -> M
|
||||||
|
plus n = M-rec
|
||||||
|
n
|
||||||
|
Succ
|
||||||
|
mod
|
||||||
|
trunc
|
||||||
|
|
||||||
|
plus_0n : (n : M) -> plus z n == n
|
||||||
|
plus_0n = M-ind
|
||||||
|
(\n -> plus z n == n)
|
||||||
|
idp
|
||||||
|
(\x -> \p -> ap Succ p)
|
||||||
|
(\x -> \c ->
|
||||||
|
trunc_paths M (\ n → plus z n == n) (mod x) (trunc (plus z x) x) c (ap Succ (ap Succ c))
|
||||||
|
)
|
||||||
|
(\m ->
|
||||||
|
paths_set M M trunc (\x -> plus z x) (\x -> x) m
|
||||||
|
)
|
||||||
|
|
||||||
|
plus_n0 : (n : M) -> plus n z == n
|
||||||
|
plus_n0 = M-ind
|
||||||
|
(\n -> plus n z == n)
|
||||||
|
idp
|
||||||
|
(\x p -> idp)
|
||||||
|
(\x c ->
|
||||||
|
trunc_paths M (\x -> plus x z == x) (mod x) (trunc x x) c idp
|
||||||
|
)
|
||||||
|
(\m -> paths_set M M trunc (\x -> plus x z) (\x -> x) m )
|
||||||
|
|
||||||
|
plus_Sn : (n m : M) -> plus (Succ n) m == Succ (plus n m)
|
||||||
|
plus_Sn n = M-ind
|
||||||
|
(\m -> plus (Succ n) m == Succ (plus n m))
|
||||||
|
idp
|
||||||
|
(\x p -> ap Succ p)
|
||||||
|
(\x c ->
|
||||||
|
trunc_paths M (\x -> plus (Succ n) x == Succ (plus n x)) (mod x) (trunc (plus (Succ n) x) (Succ (plus n x))) c (ap Succ (ap Succ c))
|
||||||
|
)
|
||||||
|
(\m -> paths_set M M trunc (\x -> plus (Succ x) m) (\x -> Succ(plus x m)) n)
|
||||||
|
|
||||||
|
plus_nS : (n m : M) -> plus n (Succ m) == Succ (plus n m)
|
||||||
|
plus_nS n m = idp
|
||||||
|
|
||||||
|
not : Bool -> Bool
|
||||||
|
not true = false
|
||||||
|
not false = true
|
||||||
|
|
||||||
|
not-not : (x : Bool) -> x == not (not x)
|
||||||
|
not-not true = idp
|
||||||
|
not-not false = idp
|
||||||
|
|
||||||
|
toBool : M -> Bool
|
||||||
|
toBool = M-rec
|
||||||
|
true
|
||||||
|
not
|
||||||
|
((\x -> not-not x))
|
||||||
|
Bool-is-set
|
||||||
|
|
||||||
|
toBoolS : (n : M) -> toBool (Succ n) == not (toBool n)
|
||||||
|
toBoolS = M-ind
|
||||||
|
(\n -> toBool (Succ n) == not (toBool n))
|
||||||
|
idp
|
||||||
|
(\x p -> idp)
|
||||||
|
(\n c ->
|
||||||
|
trunc_paths M (\x -> toBool (Succ x) == not (toBool x)) (mod n) (Bool-is-set (not (toBool n)) (not (toBool n))) c idp)
|
||||||
|
(\m -> paths_set M Bool Bool-is-set (\n -> toBool(Succ n)) (\n -> not(toBool n)) m)
|
||||||
|
|
||||||
|
fromBool : Bool -> M
|
||||||
|
fromBool true = z
|
||||||
|
fromBool false = Succ z
|
||||||
|
|
||||||
|
fromBoolNot : (b : Bool) -> fromBool (not b) == Succ (fromBool b)
|
||||||
|
fromBoolNot true = idp
|
||||||
|
fromBoolNot false = mod z
|
||||||
|
|
||||||
|
iso₁ : (b : Bool) -> toBool (fromBool b) == b
|
||||||
|
iso₁ true = idp
|
||||||
|
iso₁ false = idp
|
||||||
|
|
||||||
|
iso₂ : (n : M) -> fromBool (toBool n) == n
|
||||||
|
iso₂ = M-ind
|
||||||
|
(\n -> fromBool (toBool n) == n)
|
||||||
|
idp
|
||||||
|
(\x p ->
|
||||||
|
ap fromBool (toBoolS x)
|
||||||
|
∙ fromBoolNot (toBool x)
|
||||||
|
∙ ap Succ p)
|
||||||
|
(\n p -> trunc_paths M
|
||||||
|
(λ z₁ → fromBool (toBool z₁) == z₁)
|
||||||
|
(mod n)
|
||||||
|
(trunc (fromBool (toBool n)) n)
|
||||||
|
p
|
||||||
|
(ap fromBool (toBoolS (Succ n))
|
||||||
|
∙ fromBoolNot (toBool (Succ n))
|
||||||
|
∙ ap Succ (ap fromBool (toBoolS n) ∙ fromBoolNot (toBool n) ∙ ap Succ p))
|
||||||
|
)
|
||||||
|
(\m -> paths_set M M trunc (\n -> fromBool (toBool n)) (\n -> n) m)
|
Loading…
Reference in New Issue