diff --git a/FiniteSets/subobjects/b_finite.v b/FiniteSets/subobjects/b_finite.v index e222025..4be1e0c 100644 --- a/FiniteSets/subobjects/b_finite.v +++ b/FiniteSets/subobjects/b_finite.v @@ -401,7 +401,7 @@ Section kfin_bfin. { reflexivity. } destruct (dec (b = b)); [ reflexivity | contradiction ]. } Defined. - + Theorem bfin_union : @closedUnion A Bfin. Proof. intros X Y HX HY. @@ -409,16 +409,9 @@ Section kfin_bfin. strip_truncations. revert fX. revert X. induction n; intros X fX. - - destruct HY as [m fY]. strip_truncations. - exists m. apply tr. - transitivity {a : A & a ∈ Y}; [ | assumption ]. - apply equiv_functor_sigma_id. - intros a. - apply equiv_iff_hprop. - * intros Ha. strip_truncations. - destruct Ha as [Ha | Ha]; [ | apply Ha ]. - contradiction (fX (a;Ha)). - * intros Ha. apply tr. by right. + - rewrite (X_empty _ X fX). + rewrite (neutralL_max (Sub A)). + apply HY. - destruct (split X n fX) as (X' & b & HX' & HX). assert (Bfin (X'∪ Y)) by (by apply IHn). diff --git a/FiniteSets/subobjects/sub.v b/FiniteSets/subobjects/sub.v index 3eca93a..74c959f 100644 --- a/FiniteSets/subobjects/sub.v +++ b/FiniteSets/subobjects/sub.v @@ -24,7 +24,7 @@ Section sub_classes. Variable C : (A -> hProp) -> hProp. Context `{Univalence}. - Instance subobject_lattice : Lattice (Sub A). + Global Instance subobject_lattice : Lattice (Sub A). Proof. apply _. Defined. @@ -75,4 +75,4 @@ Section intersect. strip_truncations. apply (inl (tr (t2^ @ t1))). Defined. -End intersect. \ No newline at end of file +End intersect.